Nowadays, a commonly used wireless network (i.e. Wi-Fi) operates with the aid of a fixed
infrastructure (i.e. an access point) to facilitate communication between nodes when they
roam from one location to another. The need for such a fixed supporting infrastructure
limits the adaptability of the wireless network, especially in situations where the
deployment of such an infrastructure is impractical. In addition, Wi-Fi limits nodes'
communication as it only provides facility for mobile nodes to send and receive
information, but not reroute the information across the network. Recent advancements in
computer network introduced a new wireless network, known as a Mobile Ad Hoc
Network (MANET), to overcome these limitations.
MANET has a set of unique characteristics that make it different from other kind of
wireless networks. Often referred as a peer to peer network, such a network does not have
any fixed topology, thus nodes are free to roam anywhere, and could join or leave the
network anytime they desire. Its ability to be setup without the need of any infrastructure is
very useful, especially in geographically constrained environments such as in a military
battlefield or a disaster relief operation. In addition, through its multi hop routing facility,
each node could function as a router, thus communication between nodes could be made
available without the need of a supporting fixed router or an access point. However, these
handy facilities come with big challenges, especially in dealing with the security issues.
This research aims to address MANET security issues by proposing a novel intrusion
detection system that could be used to complement existing prevention mechanisms that
have been proposed to secure such a network.
A comprehensive analysis of attacks and the existing security measures proved that there is
a need for an Intrusion Detection System (IDS) to protect MANETs against security threats.
The analysis also suggested that the existing IDS proposed for MANET are not immune
against a colluding blackmail attack due to the nature of such a network that comprises
autonomous and anonymous nodes. The IDS architecture as proposed in this study utilises
trust relationships between nodes to overcome this nodes' anonymity issue. Through a
friendship mechanism, the problems of false accusations and false alarms caused by
blackmail attackers in global detection and response mechanisms could be eliminated.
The applicability of the friendship concept as well as other proposed mechanisms to solve
MANET IDS related issues have been validated through a set of simulation experiments.
Several MANET settings, which differ from each other based on the network's density
level, the number of initial trusted friends owned by each node, and the duration of the
simulation times, have been used to study the effects of such factors towards the overall
performance of the proposed IDS framework. The results obtained from the experiments
proved that the proposed concepts are capable to at least minimise i f not fully eliminate the
problem currently faced in MANET IDS.
Date of Award | 2007 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Steve Furnell (Director of Studies (First Supervisor)), P Brooke (Other Supervisor) & Nathan Clarke (Other Supervisor) |
---|
Two-tier Intrusion Detection System for Mobile Ad Hoc Networks
RAZAK, S. A. (Author). 2007
Student thesis: PhD