The grounding of language in humanoid robots is a fundamental problem, especially
in social scenarios which involve the interaction of robots with human beings. Indeed,
natural language represents the most natural interface for humans to interact
and exchange information about concrete entities like KNIFE, HAMMER and abstract
concepts such as MAKE, USE. This research domain is very important not
only for the advances that it can produce in the design of human-robot communication
systems, but also for the implication that it can have on cognitive science.
Abstract words are used in daily conversations among people to describe events and
situations that occur in the environment. Many scholars have suggested that the
distinction between concrete and abstract words is a continuum according to which
all entities can be varied in their level of abstractness.
The work presented herein aimed to ground abstract concepts, similarly to concrete
ones, in perception and action systems. This permitted to investigate how different
behavioural and cognitive capabilities can be integrated in a humanoid robot in
order to bootstrap the development of higher-order skills such as the acquisition of
abstract words. To this end, three neuro-robotics models were implemented.
The first neuro-robotics experiment consisted in training a humanoid robot to perform
a set of motor primitives (e.g. PUSH, PULL, etc.) that hierarchically combined
led to the acquisition of higher-order words (e.g. ACCEPT, REJECT). The
implementation of this model, based on a feed-forward artificial neural networks,
permitted the assessment of the training methodology adopted for the grounding of
language in humanoid robots.
In the second experiment, the architecture used for carrying out the first study
was reimplemented employing recurrent artificial neural networks that enabled the
temporal specification of the action primitives to be executed by the robot. This
permitted to increase the combinations of actions that can be taught to the robot
for the generation of more complex movements.
For the third experiment, a model based on recurrent neural networks that integrated
multi-modal inputs (i.e. language, vision and proprioception) was implemented for
the grounding of abstract action words (e.g. USE, MAKE). Abstract representations
of actions ("one-hot" encoding) used in the other two experiments, were replaced
with the joints values recorded from the iCub robot sensors.
Experimental results showed that motor primitives have different activation patterns
according to the action's sequence in which they are embedded. Furthermore, the
performed simulations suggested that the acquisition of concepts related to abstract
action words requires the reactivation of similar internal representations activated
during the acquisition of the basic concepts, directly grounded in perceptual and
sensorimotor knowledge, contained in the hierarchical structure of the words used
to ground the abstract action words.
Date of Award | 2014 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Angelo Cangelosi (Other Supervisor) |
---|
- Abstract Words
- Symbol Grounding
- Developmental Cognitive Robotics
TOWARDS THE GROUNDING OF ABSTRACT CATEGORIES IN COGNITIVE ROBOTS
Stramandinoli, F. (Author). 2014
Student thesis: PhD