The biological uptake and transformation of inorganic nitrogen species is
described for contrasting marine environments which include a sea loch, riverine plume,
polar marginal ice-zone, continental shelf break, oligotrophic ocean and a mesoscale
eddy. Uptake of nitrate and ammonium by phytoplankton has been determined using the
stable isotope as a tracer and continuous flow stable isotope-ratio mass spectrometry.
The analysis of dissolved and atmospheric nitrous oxide was made using electron capture
detector gas chromatography in a novel configuration which also allowed for the
simultaneous analysis of methane from a single sample.
Significant advances in the study of the marine nitrogen cycle have been made
and presented to the scientific community via publication in high quality research
journals and by the placement of data into the British Oceanographic Data Centre. These
are important from local and global perspectives; information on the trophic status of
seawaters is presented with respect to seasonal and hydrographical variability, as is the
contribution made to knowledge regarding the role of nitrogen in climate change.
Nitrogen availability is limiting in many oceans and attempts to constrain the
global atmosphere - ocean fluxes of CO2 are based on basin scale nitrogen balances. The
development of novel analytical procedures and their subsequent use during a number of
field programs and modeling exercises has increased the available knowledge regarding
the role of nitrogen in the removal of carbon to the deep ocean. In particular new insights
into new production and ultimately carbon export have been made, these include: (i) The
accepted threshold limit for phytoplankton uptake of nitrate in the oligotrophic ocean has
been reduced from 0.016 to 0.005 mmol m ^ (ii) a relationship has been described
relating the size structure of the phytoplankton productivity to new production which can
be used as a direct estimate of carbon export, (iii) a series of algorithms have been
produced to allow the basin scale estimation of new production from satellite and ship
derived data, and (iv) whilst nitrous oxide plays a significant role in radiative forcing and
stratospheric ozone depletion, an area in the Southern Ocean was found to provide a
seasonal sink to atmospheric N2O.
Date of Award | 2001 |
---|
Original language | English |
---|
Awarding Institution | |
---|
THE UPTAKE AND FLUX OF DISSOLVED NITROGEN IN MARINE WATERS
REES, A. P. (Author). 2001
Student thesis: PhD