Organic matter which is insoluble in common solvents and non-oxidising acids often
comprises the quantitatively most important fraction of organic matter in sediments. This
operationally defined material is usually simply termed 'insoluble organic matter' (IOM)
or 'kerogen' when it is isolated from ancient sediments. Indeed, kerogen is regarded as the
most abundant form of carbon on the planet. The molecular character of this generic
material has not been fully elucidated, principally because of its insolubility which limits
instrumental methods of analysis to those applicable to solid substrates. This thesis
describes the quantitative isolation of IOM from lacustrine and marine sediments and two
species of methanogenic bacteria using a sequential isolation procedure. A range of
synthetic IOMs (melanoidins) was also prepared. The dissolution of IOM and melanoidins
obtained in this manner was then attempted using the acidic ionic liquid l-ethyl-3-
methylimidazolium chloride-aluminium (III) chloride. Two synthetic dendrimers
containing similar functional groups to those observed in sedimentary IOM were used to
try and assess the mode of action of the ionic liquid. Ionic liquid treatment of the DCM
soluble dendrimers resulted in the formation of 7 - 62 % of material that was no longer
soluble in DCM, whilst the soluble components had been substantially altered. The ionic
liquid was found to non-quantitatively promote ether cleavage, protonation and
rearrangement reactions.
IOM was isolated from lacustrine Rostherne Mere, UK, sediments (7 - 3 0 % dry weight),
Kimmeridge Clay, Dorset (11 - 12 %) and methanogenic bacteria (Methanococcus
jannaschii, 3 %; Methanobacterium thermoaiitotrophicum, 0.1 %) using a time-consuming
isolation procedure involving over forty separate chemical manipulations. Monitoring of
the sequential isolation of IOM and characterisation of the final isolates was carried out
using solid-state NMR, IR, elemental analysis, pyrolysis-gas chromatography-mass
spectrometry (Py-GC-MS), scanning electron microscopy, and the newer surface sensitive
technique of time of flight-secondary ion mass spectrometry (ToF-SIMS). Less than 1 % of
sedimentary IOM and 5 % of Kimmeridge Clay IOM was soluble in DCM following ionic
liquid treatment, whilst alkyl chains were lost from the insoluble portion which also
increased in aromaticity. The poor yield recovered following ionic liquid treatment of M.
jannaschii IOM (5 %) was attributed to loss of volatile material during hydrolysis.
Following ionic liquid treatment 93 - 96 % of the melanoidins remained insoluble in DCM
although their character had been altered, becoming more condensed. This ionic liquid
dissolution procedure has not provided the substantial progress in elucidating the
molecular character of IOM promised by earlier reports.
Date of Award | 2000 |
---|
Original language | English |
---|
Awarding Institution | |
---|
THE QUANTITATIVE ISOLATION OF 'INSOLUBLE ORGANIC MATTER' (IOM) FROM SEDIMENTS AND BACTERIA, AND ITS ATTEMPTED DISSOLUTION USING THE IONIC LIQUID l-ETHYL-3- METHYLIMIDAZOLIUM CHLORIDE-ALUMINIUM (HI) CHLORIDE
Sutton, P. (Author). 2000
Student thesis: PhD