This thesis surveys linearisation techniques for implementing monolithic MOS
active resistors and transconductors, and investigates the design of linear tunable
resistors and transconductors. Improving linearity and tunability in the presence
of non-ideal factors such as bulk modulation, mobility-degradation effects and mismatch
of transistors is a principal objective. A family of new non-saturation-mode
resistors and two novel saturation-mode transconductors are developed. Where
possible, approximate analytical expressions are derived to explain the principles
of operation. Performance comparisons of the new structures are made with other
well-known circuits and their relative advantages and disadvantages evaluated.
Experimental and simulation results are presented which validate the proposed
linearisation techniques. It is shown that the proposed family of resistors offers
improved linearity whilst the transconductors combine extended tunability with
low distortion. Continuous-time filter examples are given to demonstrate the
potential of these circuits for application in analogue signal-processing tasks.
Date of Award | 1992 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Sponsors | GEC Plessey Semiconductors, Plymouth |
---|
The design of active resistors and transductors in a CMOS technology
Chan, P. K. (Author). 1992
Student thesis: PhD