Sensorless control strategies were first suggested well over a decade ago with the aim of
reducing the size, weight and unit cost of electrically actuated servo systems. The
resulting algorithms have been successfully applied to the induction and synchronous
motor families in applications where control of armature speeds above approximately one
hundred revolutions per minute is desired. However, sensorless position control remains
problematic.
This thesis provides an in depth investigation into sensorless motor control strategies for
high precision motion control applications. Specifically, methods of achieving control of
position and very low speed thresholds are investigated. The developed grey box
identification techniques are shown to perform better than their traditional white or black
box counterparts. Further, fuzzy model based sliding mode control is implemented and
results demonstrate its improved robustness to certain classes of disturbance. Attempts to
reject uncertainty within the developed models using the sliding mode are discussed.
Novel controllers, which enhance the performance of the sliding mode are presented.
Finally, algorithms that achieve control without a primary feedback sensor are
successfully demonstrated. Sensorless position control is achieved with resolutions
equivalent to those of existing stepper motor technology. The successful control of
armature speeds below sixty revolutions per minute is achieved and problems typically
associated with motor starting are circumvented.
Date of Award | 2002 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Precision Control of a Sensorless Brushless Direct Current Motor System
Knight, M. J. (Author). 2002
Student thesis: PhD