Vehicle Ad hoc Networks (V ANET) have been proposed to provide safety on the
road and deliver road traffic information and route guidance to drivers along with
commercial applications. However the challenges facing V ANET are numerous. Nodes
move at high speeds, road side units and basestations are scarce, the topology is
constrained by the road geometry and changes rapidly, and the number of nodes peaks
suddenly in traffic jams. In this thesis we investigate the physical and link layers of
V ANET and propose methods to achieve high data rates and high throughput.
For the physical layer, we examine the use of Vertical BLAST (VB LAST) systems
as they provide higher capacities than single antenna systems in rich fading
environments. To study the applicability of VB LAST to VANET, a channel model was
developed and verified using measurement data available in the literature. For no to
medium line of sight, VBLAST systems provide high data rates. However the
performance drops as the line of sight strength increases due to the correlation between
the antennas. Moreover, the performance of VBLAST with training based channel
estimation drops as the speed increases since the channel response changes rapidly. To
update the channel state information matrix at the receiver, a channel tracking algorithm
for flat fading channels was developed. The algorithm updates the channel matrix thus
reducing the mean square error of the estimation and improving the bit error rate (BER).
The analysis of VBLAST-OFDM systems showed they experience an error floor due to
inter-carrier interference (lCI) which increases with speed, number of antennas
transmitting and number of subcarriers used. The update algorithm was extended to
VBLAST -OFDM systems and it showed improvements in BER performance but still
experienced an error floor. An algorithm to equalise the ICI contribution of adjacent
subcarriers was then developed and evaluated. The ICI equalisation algorithm reduces
the error floor in BER as more subcarriers are equalised at the expense of more
hardware complexity.
The connectivity of V ANET was investigated and it was found that for single lane
roads, car densities of 7 cars per communication range are sufficient to achieve high
connectivity within the city whereas 12 cars per communication range are required for
highways. Multilane roads require higher densities since cars tend to cluster in groups.
Junctions and turns have lower connectivity than straight roads due to disconnections at
the turns. Although higher densities improve the connectivity and, hence, the
performance of the network layer, it leads to poor performance at the link layer. The
IEEE 802.11 p MAC layer standard under development for V ANET uses a variant of
Carrier Sense Multiple Access (CSMA). 802.11 protocols were analysed
mathematically and via simulations and the results prove the saturation throughput of
the basic access method drops as the number of nodes increases thus yielding very low
throughput in congested areas. RTS/CTS access provides higher throughput but it
applies only to unicast transmissions. To overcome the limitations of 802.11 protocols,
we designed a protocol known as SOFT MAC which combines Space, Orthogonal
Frequency and Time multiple access techniques. In SOFT MAC the road is divided into
cells and each cell is allocated a unique group of subcarriers. Within a cell, nodes share
the available subcarriers using a combination of TDMA and CSMA. The throughput
analysis of SOFT MAC showed it has superior throughput compared to the basic access
and similar to the RTS/CTS access of 802.11.
Date of Award | 2009 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Physical and Link Layer Implications in Vehicle Ad Hoc Networks
Abdalla, G. M. T. (Author). 2009
Student thesis: PhD