The last decade has witnessed massive growth in both the technological development, and
the consumer adoption of mobile devices such as mobile handsets and PDAs. The recent
introduction of wideband mobile networks has enabled the deployment of new services
with access to traditionally well protected personal data, such as banking details or
medical records. Secure user access to this data has however remained a function of the
mobile device's authentication system, which is only protected from masquerade abuse by
the traditional PIN, originally designed to protect against telephony abuse.
This thesis presents novel research in relation to advanced subscriber authentication for
mobile devices. The research began by assessing the threat of masquerade attacks on
such devices by way of a survey of end users. This revealed that the current methods of
mobile authentication remain extensively unused, leaving terminals highly vulnerable to
masquerade attack. Further investigation revealed that, in the context of the more
advanced wideband enabled services, users are receptive to many advanced
authentication techniques and principles, including the discipline of biometrics which
naturally lends itself to the area of advanced subscriber based authentication.
To address the requirement for a more personal authentication capable of being applied
in a continuous context, a novel non-intrusive biometric authentication technique was
conceived, drawn from the discrete disciplines of biometrics and Auditory Evoked
Responses. The technique forms a hybrid multi-modal biometric where variations in the
behavioural stimulus of the human voice (due to the propagation effects of acoustic
waves within the human head), are used to verify the identity o f a user. The resulting
approach is known as the Head Authentication Technique (HAT).
Evaluation of the HAT authentication process is realised in two stages. Firstly, the
generic authentication procedures of registration and verification are automated within a
prototype implementation. Secondly, a HAT demonstrator is used to evaluate the
authentication process through a series of experimental trials involving a representative
user community. The results from the trials confirm that multiple HAT samples from
the same user exhibit a high degree of correlation, yet samples between users exhibit a
high degree of discrepancy. Statistical analysis of the prototypes performance realised
early system error rates of; FNMR = 6% and FMR = 0.025%. The results clearly
demonstrate the authentication capabilities of this novel biometric approach and the
contribution this new work can make to the protection of subscriber data in next
generation mobile networks.
Date of Award | 2006 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Non-Intrusive Subscriber Authentication for Next Generation Mobile Communication Systems
RODWELL, P. M. (Author). 2006
Student thesis: PhD