The aim of this investigation was to measure and analyse wave loading on a full scale coastal
structure in order to validate current breakwater design methods and to improve understanding
of the physical processes involved.
A range of new, robust field measurement instrumentation was developed and deployed at the
chosen field site, the Alderney Breakwater in the Channel Islands. The instrumentation
deployed in this particularly harsh wave loading environment included an array of wave loading
pressure sensors together with co-located void fraction gauges, which were used to measure
the percentage air entrained within the seawater. Wave data was measured by means of a sea
bed array of six pressure sensors which were logged using an underwater data logger. Data
from the instrumentation mounted on the breakwater wall was logged with a high specification
remote data logger. Both the instrumentation and the data acquisition equipment were
developed and adapted specifically for this investigation and as a result over 150 high quality
data sets were recorded at very high logging rates, which allowed field data analysis at an
unprecedented level. New calibration and data processing methods were developed for the
analysis of this novel set of data records. Due to the meticulous planning, instrument
development, data acquisition development, and deployment the data collected is, to the best
of the Author's knowledge, the highest quality wave loading field data collected to date.
The wave conditions measured at the site were used as inputs to three commonly used design
methods for vertical coastal structures, which were used to estimate the maximum wave
loading pressures over the height of the structure. The pressures and forces predicted by the
models were contrasted with measured values and it was found that the Goda method (1985)
predicted the events with a high degree of accuracy provided that the waves were not breaking
directly onto the structure. When waves did break onto the structure high magnitude, short
duration pressures were frequently measured which sometimes also acted over a very small
spatial area. There was a large degree of temporal and spatial variability in the high magnitude
breaking wave pressures and they were not accurately predicted by any of the models. The
relationship between wave momentum flux and wave loading impulse was investigated both on
a record by record basis and using a wave by wave analysis. For the Alderney field site a
consistent relationship was found between the wave momentum flux and wave loading
impulse, which could be used to estimate the wave loading impulse and duration for known
wave input conditions. Features of interest were also identified from temporal comparisons of
individual co-located pressure and aeration traces, including negative pressures and a negative
correlation between air content and pressure over short time scales.
Date of Award | 1999 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Measurement and Analysis of Wave Loading on a Full Scale Coastal Structure
CRAWFORD, A. R. (Author). 1999
Student thesis: PhD