The dynamic characteristics of autonomous underwater vehicles (AUVs) present a control
problem that classical methods cannot often accommodate easily. Fundamentally, AUV dynamics
are highly non-linear, and the relative similarity between the linear and angular velocities about
each degree of freedom means that control schemes employed within other flight vehicles are not
always applicable. In such instances, intelligent control strategies offer a more sophisticated
approach to the design of the control algorithm. Neurofuzzy control is one such technique, which
fuses the beneficial properties of neural networks and fuzzy logic in a hybrid control architecture.
Such an approach is highly suited to development of an autopilot for an AUV.
Specifically, the adaptive network-based fuzzy inference system (ANFIS) is discussed in
Chapter 4 as an effective new approach for neurally tuning course-changing fuzzy autopilots.
However, the limitation of this technique is that it cannot be used for developing multivariable
fuzzy structures. Consequently, the co-active ANFIS (CANFIS) architecture is developed and
employed as a novel multi variable AUV autopilot within Chapter 5, whereby simultaneous control
of the AUV yaw and roll channels is achieved. Moreover, this structure is flexible in that it is
extended in Chapter 6 to perform on-line control of the AUV leading to a novel autopilot design
that can accommodate changing vehicle pay loads and environmental disturbances.
Whilst the typical ANFIS and CANFIS structures prove effective for AUV control system
design, the well known properties of radial basis function networks (RBFN) offer a more flexible
controller architecture. Chapter 7 presents a new approach to fuzzy modelling and employs both
ANFIS and CANFIS structures with non-linear consequent functions of composite Gaussian form.
This merger of CANFIS and a RBFN lends itself naturally to tuning with an extended form of the
hybrid learning rule, and provides a very effective approach to intelligent controller development.
Date of Award | 1999 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Intelligent Control Strategies for an Autonomous Underwater Vehicle
Craven, P. J. (Author). 1999
Student thesis: PhD