This thesis presents the first investigation of the impact of GPU
computing on cognitive robotics by providing a series of novel experiments in
the area of action and language acquisition in humanoid robots and computer
vision. Cognitive robotics is concerned with endowing robots with high-level
cognitive capabilities to enable the achievement of complex goals in complex
environments. Reaching the ultimate goal of developing cognitive robots will
require tremendous amounts of computational power, which was until
recently provided mostly by standard CPU processors. CPU cores are
optimised for serial code execution at the expense of parallel execution, which
renders them relatively inefficient when it comes to high-performance
computing applications. The ever-increasing market demand for
high-performance, real-time 3D graphics has evolved the GPU into a highly
parallel, multithreaded, many-core processor extraordinary computational
power and very high memory bandwidth. These vast computational resources
of modern GPUs can now be used by the most of the cognitive robotics models
as they tend to be inherently parallel. Various interesting and insightful
cognitive models were developed and addressed important scientific questions
concerning action-language acquisition and computer vision. While they have
provided us with important scientific insights, their complexity and
application has not improved much over the last years. The experimental
tasks as well as the scale of these models are often minimised to avoid
excessive training times that grow exponentially with the number of neurons
and the training data. This impedes further progress and development of
complex neurocontrollers that would be able to take the cognitive robotics
research a step closer to reaching the ultimate goal of creating intelligent
machines. This thesis presents several cases where the application of the GPU
computing on cognitive robotics algorithms resulted in the development of
large-scale neurocontrollers of previously unseen complexity enabling the
conducting of the novel experiments described herein.
Date of Award | 2014 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Angelo Cangelosi (Other Supervisor) |
---|
- GPU
- Cognitive Robotics
- Complex neural networks
- Action and language learning
- Biologically inspired vision systems
GPU Computing for Cognitive Robotics
Peniak, M. (Author). 2014
Student thesis: PhD