This thesis reviews various previously reported techniques for simulating artificial
neural networks and investigates the design of fully-connected feedforward networks
based on MOS transistors operating in the subthreshold mode of conduction as they are
suitable for performing compact, low power, implantable pattern recognition systems.
The principal objective is to demonstrate that the transfer characteristic of the devices
can be fully exploited to design basic processing modules which overcome the linearity
range, weight resolution, processing speed, noise and mismatch of components
problems associated with weak inversion conduction, and so be used to implement
networks which can be trained to perform practical tasks.
A new four-quadrant analogue multiplier, one of the most important cells in the
design of artificial neural networks, is developed. Analytical as well as simulation
results suggest that the new scheme can efficiently be used to emulate both the synaptic
and thresholding functions. To complement this thresholding-synapse, a novel
current-to-voltage converter is also introduced. The characteristics of the well known
sample-and-hold circuit as a weight memory scheme are analytically derived and
simulation results suggest that a dummy compensated technique is required to obtain the
required minimum of 8 bits weight resolution. Performance of the combined load and
thresholding-synapse arrangement as well as an on-chip update/refresh mechanism are
analytically evaluated and simulation studies on the Exclusive OR network as a
benchmark problem are provided and indicate a useful level of functionality.
Experimental results on the Exclusive OR network and a 'QRS' complex detector
based on a 10:6:3 multilayer perceptron are also presented and demonstrate the potential
of the proposed design techniques in emulating feedforward neural networks.
Date of Award | 1997 |
---|
Original language | English |
---|
Awarding Institution | |
---|
FEEDFORWARD ARTIFICIAL NEURAL NETWORK DESIGN UTILISING SUBTHRESHOLD MODE CMOS DEVICES
COUE, D. X. H. L. (Author). 1997
Student thesis: PhD