A large amount of research has been put into areas of signal processing, medium design,
head and servo-mechanism design and coding for conventional longitudinal as well
as perpendicular magnetic recording. This work presents some further investigation in the
signal processing and coding aspects of longitudinal and perpendicular digital magnetic
recording.
The work presented in this thesis is based upon numerical analysis using various simulation
methods. The environment used for implementation of simulation models is C/C + +
programming. Important results based upon bit error rate calculations have been documented
in this thesis.
This work presents the new designed Asymmetric Decoder (AD) which is modified to
take into account the jitter noise and shows that it has better performance than classical
BCJR decoders with the use of Error Correction Codes (ECC). In this work, a new method
of designing Generalised Partial Response (GPR) target and its equaliser has been discussed
and implemented which is based on maximising the ratio of the minimum squared
euclidean distance of the PR target to the noise penalty introduced by the Partial Response
(PR) filter. The results show that the new designed GPR targets have consistently
better performance in comparison to various GPR targets previously published.
Two methods of equalisation including the industry's standard PR, and a novel Soft-Feedback-
Equalisation (SFE) have been discussed which are complimentary to each other.
The work on SFE, which is a novelty of this work, was derived from the problem of Inter
Symbol Interference (ISI) and noise colouration in PR equalisation. This work also shows
that multi-level SFE with MAP/BCJR feedback based magnetic recording with ECC has
similar performance when compared to high density binary PR based magnetic recording
with ECC, thus documenting the benefits of multi-level magnetic recording. It has been
shown that 4-level PR based magnetic recording with ECC at half the density of binary PR
based magnetic recording has similar performance and higher packing density by a factor
of 2.
A novel technique of combining SFE and PR equalisation to achieve best ISI cancellation
in a iterative fashion has been discussed. A consistent gain of 0.5 dB and more
is achieved when this technique is investigated with application of Maximum Transition
Run (MTR) codes. As the length of the PR target in PR equalisation increases, the gain
achieved using this novel technique consistently increases and reaches up to 1.2 dB in case
of EEPR4 target for a bit error rate of 10-5 .
Date of Award | 2008 |
---|
Original language | English |
---|
Awarding Institution | |
---|
EQUALISATION TECHNIQUES FOR MULTI-LEVEL DIGITAL MAGNETIC RECORDING
Shah, P. (Author). 2008
Student thesis: PhD