Even though the e-learning is becoming increasingly popular in the academic environment,
the quality of synchronous e-learning video is still substandard and significant work needs to be
done to improve it. The improvements have to be brought about taking into considerations both:
the network requirements and the psycho- physical aspects of the human visual system.
One of the problems of the synchronous e-learning video is that the head-and-shoulder video
of the instructor is mostly transmitted. This video presentation can be made more interesting by
transmitting shots from different angles and zooms. Unfortunately, the transmission of such
multi-shot videos will increase packet delay, jitter and other artifacts caused by frequent
changes of the scenes. To some extent these problems may be reduced by controlled reduction
of the quality of video so as to minimise uncontrolled corruption of the stream. Hence, there is a
need for controlled streaming of a multi-shot e-learning video in response to the changing
availability of the bandwidth, while utilising the available bandwidth to the maximum.
The quality of transmitted video can be improved by removing the redundant background
data and utilising the available bandwidth for sending high-resolution foreground information.
While a number of schemes exist to identify and remove the background from the foreground,
very few studies exist on the identification and separation of the two based on the understanding
of the human visual system. Research has been carried out to define foreground and background
in the context of e-learning video on the basis of human psychology. The results have been
utilised to propose methods for improving the transmission of e-learning videos.
In order to transmit the video sequence efficiently this research proposes the use of Feed-
Forward Controllers that dynamically characterise the ongoing scene and adjust the streaming
of video based on the availability of the bandwidth. In order to satisfy a number of receivers
connected by varied bandwidth links in a heterogeneous environment, the use of Multi-Layer
Feed-Forward Controller has been researched. This controller dynamically characterises the
complexity (number of Macroblocks per frame) of the ongoing video sequence and combines it
with the knowledge of availability of the bandwidth to various receivers to divide the video
sequence into layers in an optimal way before transmitting it into network.
The Single-layer Feed-Forward Controller inputs the complexity (Spatial Information and
Temporal Information) of the on-going video sequence along with the availability of bandwidth
to a receiver and adjusts the resolution and frame rate of individual scenes to transmit the
sequence optimised to give the most acceptable perceptual quality within the bandwidth
constraints.
The performance of the Feed-Forward Controllers have been evaluated under simulated
conditions and have been found to effectively regulate the streaming of real-time e-learning
videos in order to provide perceptually improved video quality within the constraints of the
available bandwidth.
Date of Award | 2007 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Bogdan Ghita (Director of Studies (First Supervisor)), P Reynolds (Other Supervisor) & Steve Furnell (Other Supervisor) |
---|
Dynamic adaptation of streamed real-time E-learning videos over the internet
Thakur, A. (Author). 2007
Student thesis: PhD