With the rising emphasis on security and the number of fraud related crimes
around the world, authorities are looking for new technologies to tighten
security of identity. Among many modern electronic technologies, digital
watermarking has unique advantages to enhance the document authenticity.
At the current status of the development, digital watermarking technologies
are not as matured as other competing technologies to support identity authentication
systems. This work presents improvements in performance of
two classes of digital watermarking techniques and investigates the issue of
watermark synchronisation.
Optimal performance can be obtained if the spreading sequences are designed
to be orthogonal to the cover vector. In this thesis, two classes of
orthogonalisation methods that generate binary sequences quasi-orthogonal
to the cover vector are presented. One method, namely "Sorting and Cancelling"
generates sequences that have a high level of orthogonality to the
cover vector. The Hadamard Matrix based orthogonalisation method, namely
"Hadamard Matrix Search" is able to realise overlapped embedding, thus the
watermarking capacity and image fidelity can be improved compared to using
short watermark sequences. The results are compared with traditional
pseudo-randomly generated binary sequences. The advantages of both classes
of orthogonalisation inethods are significant.
Another watermarking method that is introduced in the thesis is based
on writing-on-dirty-paper theory. The method is presented with biorthogonal
codes that have the best robustness. The advantage and trade-offs of
using biorthogonal codes with this watermark coding methods are analysed
comprehensively. The comparisons between orthogonal and non-orthogonal
codes that are used in this watermarking method are also made. It is found
that fidelity and robustness are contradictory and it is not possible to optimise
them simultaneously.
Comparisons are also made between all proposed methods. The comparisons
are focused on three major performance criteria, fidelity, capacity and
robustness. aom two different viewpoints, conclusions are not the same. For
fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal
codes has very strong advantage to preserve image fidelity and the advantage
of capacity performance is also significant. However, from the power
ratio point of view, the orthogonalisation methods demonstrate significant
advantage on capacity and robustness. The conclusions are contradictory
but together, they summarise the performance generated by different design
considerations.
The synchronisation of watermark is firstly provided by high contrast
frames around the watermarked image. The edge detection filters are used
to detect the high contrast borders of the captured image. By scanning
the pixels from the border to the centre, the locations of detected edges
are stored. The optimal linear regression algorithm is used to estimate the
watermarked image frames. Estimation of the regression function provides
rotation angle as the slope of the rotated frames. The scaling is corrected by
re-sampling the upright image to the original size. A theoretically studied
method that is able to synchronise captured image to sub-pixel level accuracy
is also presented. By using invariant transforms and the "symmetric
phase only matched filter" the captured image can be corrected accurately
to original geometric size. The method uses repeating watermarks to form an
array in the spatial domain of the watermarked image and the the array that
the locations of its elements can reveal information of rotation, translation
and scaling with two filtering processes.
Date of Award | 2008 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Digital watermark technology in security applications
Xu, X. (Author). 2008
Student thesis: PhD