Building intelligent systems with human level of competence is the ultimate
grand challenge for science and technology in general, and especially for the
computational intelligence community. Recent theories in autonomous cognitive
systems have focused on the close integration (grounding) of communication with
perception, categorisation and action. Cognitive systems are essential for
integrated multi-platform systems that are capable of sensing and communicating.
This thesis presents a cognitive system for a humanoid robot that integrates
abilities such as object detection and recognition, which are merged with natural
language understanding and refined motor controls. The work includes three
studies; (1) the use of generic manipulation of objects using the NMFT algorithm,
by successfully testing the extension of the NMFT to control robot behaviour; (2) a
study of the development of a robotic simulator; (3) robotic simulation experiments
showing that a humanoid robot is able to acquire complex behavioural, cognitive,
and linguistic skills through individual and social learning. The robot is able to
learn to handle and manipulate objects autonomously, to cooperate with human
users, and to adapt its abilities to changes in internal and environmental conditions.
The model and the experimental results reported in this thesis, emphasise the
importance of embodied cognition, i.e. the humanoid robot's physical interaction
between its body and the environment.
Date of Award | 2009 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Development of Cognitive Capabilities in Humanoid Robots
Tikhanoff, V. (Author). 2009
Student thesis: PhD