Increasing the track density in magnetic systems is very difficult due to inter-track interference
(ITI) caused by the magnetic field of adjacent tracks. This work presents a
two-track partial response class 4 magnetic channel with linear and symmetrical ITI; and
explores modulation codes, signal processing methods and error correction codes in order
to mitigate the effects of ITI.
Recording codes were investigated, and a new class of two-dimensional run-length
limited recording codes is described. The new class of codes controls the type of ITI
and has been found to be about 10% more resilient to ITI compared to conventional
run-length limited codes. A new adaptive trellis has also been described that adaptively
solves for the effect of ITI. This has been found to give gains up to 5dB in signal to noise
ratio (SNR) at 40% ITI. It was also found that the new class of codes were about 10%
more resilient to ITI compared to conventional recording codes when decoded with the
new trellis.
Error correction coding methods were applied, and the use of Low Density Parity
Check (LDPC) codes was investigated. It was found that at high SNR, conventional
codes could perform as well as the new modulation codes in a combined modulation and
error correction coding scheme. Results suggest that high rate LDPC codes can mitigate
the effect of ITI, however the decoders have convergence problems beyond 30% ITI.
Date of Award | 2003 |
---|
Original language | English |
---|
Awarding Institution | |
---|
CROSSTALK-RESILIANT CODING FOR HIGH DENSITY DIGITAL RECORDING
AHMED, M. Z. (Author). 2003
Student thesis: PhD