The gas chromatograms of crude oil hydrocarbons reveal both resolved and unresolved components. The
unresolved feature is commonly referred to as the unresolved complex mixture (UCM). UCMs are thought
to result from the co-elution of complex mixtures of hydrocarbons with similar chemical properties and
become more obvious as resolved components are removed by processes such as weathering and refining.
Consequently UCMs are a prominent feature in oil-polluted sediments, biodegraded crudes and refineiT
products. The characterisation of both aliphatic and aromatic unresolved complex mixtures (UCMs) of
hydrocarbons, as well as their possible effects on the environment, is described.
An aliphatic hydrocarbon UCM isolated from the base oil of Silkolene 150 lubricating oil was characterised
by a combination of micro vacuum-distillation and oxidative degradation. Vacuum-distillation produced six
distillate cuts and a residue which were all highly unresolved by GC (ca. 951/6). The average molecular
weight of each cut was determined by probe CIMS (310 - 440 Daltons), and varied by -20 Daltons. Cr03
oxidation of each fraction yielded similar distributions of n-monocarboxylic acids, ketones and lactones as
well as C02 (ca. 6%). The resolved products of oxidation suggest that the aliphatic UCM is a rather
homogeneous mixture of highly branched alkanes. However a significant amount of the products remain
unresolved (UCMox.; ca. 70-95%).
A retro -structural analysis approach, using an aromatic UCM oxidant (Ru04), combined with a mass
balance approach, was used to characterise aromatic UCMs. Following reproducibility studies and the
analysis of authentic aromatic compounds, the method was applied to the characterisation of unresolved
aromatic refinery oil fractions and a suite of aromatic UCM distillate fractions. Selected refinery oils were
separated into mono-, di-, tri- and tetraaromatics by BPLC and shown to be mainly unresolved by GC (ca.
80%). Ru04 oxidation of these fractions yielded DCM soluble products (24 - 74%), water soluble products
(0 - 10%) and C02 (12 -78%). The principal resolved products in each oxidation were monocarboxylic
acids and dicarboxylic acids which were used to reconstruct precursor compounds. Vacuum-distillation of
Tia Juana Pesado crude (Venezuela) gave six cuts and a residue which were analysed by GC, 1H NMP, UV
and probe CIMS to obtain molecular weight (171 - 301 Daltons) and broad structural information whilst
Ru04 oxidation was used to obtain molecular information via the retro -structural analysis approach. This
showed that the aromatic UCM was in fact highly aliphatic and contained alkyl and cycloalkyl tetralins.
A significant advancement in the quantitative characterisation of UCMOx. and subsequently the
characterisation of aromatic UCMs was made. Ion cyclotron resonance spectrometry (ICR) was used to
characterise the Ru04 oxidation products of selected refinery fractions. Analysis of the oxidation products of
a monoaromatic refinery fraction indicated the presence of monocarboxylic acids (Cl - C21; 58%) and
alicyclic carboxylic acids (C7 - C19; 16%), a hydrogenated monoaromatic sample contained monocarboxylic
acids (Cl - C20; 30%), dicarboxylic acids (C2 - C11,7%) and alicyclic carboxylic acids (C7 - C18; 11%)
,
whilst a diaromatic fraction contained monocarboxylic acids (C10 - C19; 7%), alkyl phthalic acids (C8 - C17',
17%) and cycloalkyl phthalic acids (C11 - C15; 3%). Retro -structural analysis suggests that the nonhydrotreated
monoaromatic UCM is mainly comprised of alicyclic and alkyl substituted benzenes, the
monoaromatic UCM isolated from the hydrotreated oil of alky'l and cycloalkyl substituted tetralins and the
diaromatic fraction of alkyl and cycloalkyl naphthalenes. This was supported by, FIMS analysis of the
fractions prior to oxidation.
As an investigation of the environmental toxicity of UCMs, the effect of a saturated aliphatic UCM, and its
chemical oxidation products, on the feeding rate of mussels (Mytilus edulis), was investigated. The UCM
had little effect, whilst oxidation resulted in an increase in toxicity. The non-toxic nature of the
hydrocarbons was attributed to their low aqueous solubility, whilst oxidation resulted in the formation of
products NNith a greater solubility, which were sufficiently hydrophobic to be narcotic toxicants.
Parts of this work have been published [Thomas et al., (1993) Organic Geochemistry, Falch Hurtigtrykk,
Non%-ay(A bstract), 717-719; Thomas et al., (1995) [Vater Research. 29,371-382].
iv
Date of Award | 1995 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Steve Rowland (Other Supervisor) |
---|
- Chemistry
- Water Pollution
- Organic
- Crude oil hydrocarbons
Characterisation and environmental effects of unresolved complex mixtures of hydrocarbons
Thomas, K. V. (Author). 1995
Student thesis: PhD