In magnetic recording greater area) bit packing densities are achieved through increasing
track density by reducing space between and width of the recording tracks, and/or
reducing the wavelength of the recorded information. This leads to the requirement of
higher precision tape transport mechanisms and dedicated coding circuitry.
A TMS320 10 digital signal processor is applied to a standard low-cost, low precision,
multiple-track, compact cassette tape recording system. Advanced signal processing and
coding techniques are employed to maximise recording density and to compensate for
the mechanical deficiencies of this system. Parallel software encoding/decoding
algorithms have been developed for several Run-Length Limited modulation codes. The
results for a peak detection system show that Bi-Phase L code can be reliably employed
up to a data rate of 5kbits/second/track. Development of a second system employing a
TMS32025 and sampling detection permitted the utilisation of adaptive equalisation to
slim the readback pulse. Application of conventional read equalisation techniques, that
oppose inter-symbol interference, resulted in a 30% increase in performance.
Further investigation shows that greater linear recording densities can be achieved by
employing Partial Response signalling and Maximum Likelihood Detection. Partial
response signalling schemes use controlled inter-symbol interference to increase
recording density at the expense of a multi-level read back waveform which results in an
increased noise penalty. Maximum Likelihood Sequence detection employs soft
decisions on the readback waveform to recover this loss. The associated modulation
coding techniques required for optimised operation of such a system are discussed.
Two-dimensional run-length-limited (d, ky) modulation codes provide a further means of
increasing storage capacity in multi-track recording systems. For example the code rate
of a single track run length-limited code with constraints (1, 3), such as Miller code, can
be increased by over 25% when using a 4-track two-dimensional code with the same d
constraint and with the k constraint satisfied across a number of parallel channels. The k
constraint along an individual track, kx, can be increased without loss of clock
synchronisation since the clocking information derived by frequent signal transitions
can be sub-divided across a number of, y, parallel tracks in terms of a ky constraint. This
permits more code words to be generated for a given (d, k) constraint in two dimensions
than is possible in one dimension. This coding technique is furthered by development of
a reverse enumeration scheme based on the trellis description of the (d, ky) constraints.
The application of a two-dimensional code to a high linear density system employing
extended class IV partial response signalling and maximum likelihood detection is
proposed. Finally, additional coding constraints to improve spectral response and error
performance are discussed.
Date of Award | 1994 |
---|
Original language | English |
---|
Awarding Institution | |
---|
CHANNEL CODING TECHNIQUES FOR A MULTIPLE TRACK DIGITAL MAGNETIC RECORDING SYSTEM
Davey, P. (Author). 1994
Student thesis: PhD