As robots become more prolific in the human environment, it is important that safe operational
procedures are introduced at the same time; typical robot control methods are
often very stiff to maintain good positional tracking, but this makes contact (purposeful
or accidental) with the robot dangerous. In addition, if robots are to work cooperatively
with humans, natural interaction between agents will make tasks easier to perform with
less effort and learning time. Stability of the robot is particularly important in this
situation, especially as outside forces are likely to affect the manipulator when in a close
working environment; for example, a user leaning on the arm, or task-related disturbance
at the end-effector.
Recent research has discovered the mechanisms of how humans adapt the applied force
and impedance during tasks. Studies have been performed to apply this adaptation to
robots, with promising results showing an improvement in tracking and effort reduction
over other adaptive methods. The basic algorithm is straightforward to implement,
and allows the robot to be compliant most of the time and only stiff when required by
the task. This allows the robot to work in an environment close to humans, but also
suggests that it could create a natural work interaction with a human. In addition, no
force sensor is needed, which means the algorithm can be implemented on almost any
robot.
This work develops a stable control method for bimanual robot tasks, which could also
be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is
created and verified, which is then used for controller simulations. The biomimetic control
algorithm forms the basis of the controller, which is developed into a hybrid control
system to improve both task-space and joint-space control when the manipulator is disturbed
in the natural environment. Fuzzy systems are implemented to remove the need
for repetitive and time consuming parameter tuning, and also allows the controller to
actively improve performance during the task. Experimental simulations are performed,
and demonstrate how the hybrid task/joint-space controller performs better than either
of the component parts under the same conditions. The fuzzy tuning method is then applied
to the hybrid controller, which is shown to slightly improve performance as well as
automating the gain tuning process. In summary, a novel biomimetic hybrid controller
is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a
demonstration of task-suitability in a bimanual-type situation.
Date of Award | 2016 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Chenguang Yang (Other Supervisor) |
---|
Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment
Smith, A. (Author). 2016
Student thesis: PhD