The work in this thesis concerns with the development of a novel multisensor data fusion
(MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic
and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous
underwater vehicle (AUV) navigation system, formed by an integration of global positioning
system and inertial navigation system (GPS/INS).
The Kalman filter has been a popular method for integrating the data produced
by the GPS and INS to provide optimal estimates of AUVs position and attitude. In
this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is
proposed. The former is used to fuse the data from a variety of INS sensors whose
output is used as an input to the later where integration with GPS data takes place.
The use of an adaptation scheme based on fuzzy logic approaches to cope with the
divergence problem caused by the insufficiently known a priori filter statistics is also
explored. The choice of fuzzy membership functions for the adaptation scheme is first
carried out using a heuristic approach. Single objective and multiobjective genetic
algorithm techniques are then used to optimize the parameters of the membership
functions with respect to a certain performance criteria in order to improve the overall
accuracy of the integrated navigation system. Results are presented that show
that the proposed algorithms can provide a significant improvement in the overall
navigation performance of an autonomous underwater vehicle navigation.
The proposed technique is known to be the first method used in relation to AUV
navigation technology and is thus considered as a major contribution thereof.
Date of Award | 2004 |
---|
Original language | English |
---|
Awarding Institution | |
---|
AN INTELLIGENT NAVIGATION SYSTEM FOR AN AUTONOMOUS UNDERWATER VEHICLE
Loebis, D. (Author). 2004
Student thesis: PhD