The overall aim of this thesis was to assess the potential of developing specific quantifiable
assays of pollutant damage based on changes on the in vivo optical properties of
macroalgae, applicable to laboratory and remote systems.
The green macroalgae, E.intestinalis, was exposed to selected trace metals (copper and
zinc), triazine herbicides (Irgarol 1051 and atrazine) and a series of alcohols (n = 1 - 9).
The algal in vivo spectral properties, measured using a spectrophotometer fitted with an
integrating sphere, determined changes due to exposure, and results were compared with
established methods, including growth and fluorescence, to assess algal health status.
Each pollutant, except zinc, had a significant (P < 0.05) effect on in vivo spectral properties
at the range of concentrations used. The results indicated that the technique has potential
to identify the algal systems affected by the pollutant, as signatures obtained appeared to
indicate whether change was due to structure or pigments. The technique was sensitive,
repeatable, and could detect individual pollutants in a copper/Irgarol 1051 mixture.
The results were mathematically interpreted to provide ratios, individual wavelengths,
sensitivity figures, web diagrams and QSARs to highligh.t differences between pollutant
effect. The QSAR, obtained from E.intestinalis exposed to a series of alcohols, had a R2
value of0.9682 using in vivo absorptance at 680 nm and Log Kow, which corresponds with
published values of 0.97 using ion leakage with the same species. However, the technique
of in vivo spectral properties has the advantage of being non-invasive.
Samples of E.intestinalis were collected from different field sites and their in vivo spectral
responses could be grouped according to potential pollutants to which they had been
exposed. In addition, the potential of extending the technique for use in remote sensing is
discussed. It was concluded that the technique of monitoring in vivo spectral properties is
an appropriate biomonitor to add to the expanding range of current biomonitors.
Date of Award | 2000 |
---|
Original language | English |
---|
Awarding Institution | |
---|
AN EVALUATION OF THE USE OF SPECTRAL PROPERTIES IN MONITORING STRESS IN MARINE MACROALGAE
MAY, S. J. (Author). 2000
Student thesis: PhD