Accumulation of Platinum Group Elements by the Marine Microalga, Chlorella stigmatophora

  • Leyla Shams

Student thesis: PhD

Abstract

Very little information exists on the marine biogeochemistry of Rh, Pd and Pt, or the platinum group elements (PGE), an emerging group of contaminants whose principal emissions are associated with the abrasion of the catalytic converter in motor vehicles and chemotherapy drugs discharged in hospital wastes. In this study, Rh(III), Pd(II) and Pt(IV) were added individually and in combination to cultures of the marine microalga, Chlorella stigmatophora, maintained in coastal seawater at 15oC and under fluorescence lighting both in the presence and absence of trace nutrients (e.g. Fe, Co, Zn and EDTA). The accumulation of PGE was established under varying conditions (pH, algal biomass, PGE concentration, time) by ICP-MS analysis of seawater and nitric acid digests and EDTA washes of the alga, the latter giving a measure of PGE adsorption by C. stigmatophora. Under all conditions the extent of accumulation was in the order: Rh > Pd >> Pt. In short-term (24-h) exposures, accumulation isotherms were quasi-linear up to PGE concentrations of 30 ug L-1, although Pd displayed convexity, hence saturation of available binding sites, at greater concentrations. The pH, adjusted between about 5.5 and 9.5 by addition of acid or base, did not have a great impact on PGE accumulation, with Rh displaying a moderate increase in accumulation and Pd a moderate reduction with increasing pH. More important, all PGE displayed a significant reduction in accumulation on a weight-normalized basis with increasing concentration of algae, an effect not reported for metal-marine algal interactions previously in the literature. Longer-term experiments showed that the rates of both overall accumulation and internalization were greatest for Pd and least for Pt. Consistent with this observation, the toxicity to C. stigmatophora evaluated by both pigment content and growth rate, was significantly greater for Pd than for Pt. Differences in the biogeochemical behaviours among the PGE are attributed to differences in their aqueous speciation in seawater, different affinities for the algal surface, different tendencies to cross the cell membrane, and especially with regard to Pd and Pt, differences in the rates of these interactions. Thus, although the equilibrium chemistries of Pd and Pt are very similar, their differential biogeochemistries are the result of kinetic constraints on reactions involving the latter. Because the environmental concentrations of PGE are predicted to increase with increasing emissions from vehicles and hospitals, the results of this study make an important contribution to an improved understanding of the likely effects and fates of these emerging contaminants in the marine environment. The results are also more generally important to an improved understanding of the interactions of trace metals with microalgae in seawater.
Date of Award2010
Original languageEnglish
Awarding Institution
  • University of Plymouth
SupervisorAndrew Turner (Other Supervisor)

Keywords

  • platinum
  • palladium
  • rhodium
  • PGE
  • metal uptake
  • algae

Cite this

'