This thesis investigates the design and evaluation of a control system, that is able to adapt
quickly to changes in environment and steering characteristics. This type of controller is
particularly suited for applications with wide-ranging working conditions such as those experienced
by small motorised craft.
A small motorised craft is assumed to be highly agile and prone to disturbances, being
thrown off-course very easily when travelling at high speed 'but rather heavy and sluggish
at low speeds. Unlike large vessels, the steering characteristics of the craft will change
tremendously with a change in forward speed. Any new design of autopilot needs to be to
compensate for these changes in dynamic characteristics to maintain near optimal levels of
performance.
This study identities the problems that need to be overcome and the variables involved.
A self-organising fuzzy logic controller is developed and tested in simulation. This type of
controller learns on-line but has certain performance limitations.
The major original contribution of this research investigation is the development of an
improved self-adaptive and predictive control concept, the Predictive Self-organising Fuzzy
Logic Controller (PSoFLC). The novel feature of the control algorithm is that is uses a
neural network as a predictive simulator of the boat's future response and this network is
then incorporated into the control loop to improve the course changing, as well as course
keeping capabilities of the autopilot investigated.
The autopilot is tested in simulation to validate the working principle of the concept and
to demonstrate the self-tuning of the control parameters. Further work is required to establish
the suitability of the proposed novel concept to other control.
Date of Award | 2000 |
---|
Original language | English |
---|
Awarding Institution | |
---|
A Predictive Fuzzy-Neural Autopilot for the Guidance of Small Motorised Marine Craft
Richter, R. (Author). 2000
Student thesis: PhD