Wave power extraction from a floating elastic disk-shaped wave energy converter

Siming Zheng*, Simone Michele, Hui Liang*, Michael H. Meylan, Deborah Greaves

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Downloads (Pure)

Abstract

In this paper, a concept of a floating elastic wave energy converter consisting of a disk-shaped elastic plate is proposed. The floating plate is moored to the seabed through a series of power take-off (PTO) units. A theoretical model based on the linear potential flow theory and eigenfunction matching method is developed to study the hydroelastic characteristics and evaluate wave power absorption of the device. The PTO system is simulated as a discrete PTO, and moreover, it is also modelled as a continuum PTO to represent the case when the PTO system is composed of a large number of PTO units. The continuum PTO approximation is tested against the discrete PTO simulation for accuracy. Two methods are proposed to predict the wave power absorption of the device. After running convergence analysis and model validation, the present model is employed to do a multiparameter impact analysis. The device adopting a continuum PTO system is found to capture wave power efficiently in an extensive range of wave frequencies. For the continuum PTO system, it is theoretically possible to adopt optimised PTO damper and stiffness/mass to guarantee the absorption of 100 % of the energy flux available in one circular component of the plane incident wave.
Original languageEnglish
Number of pages0
JournalJournal of Fluid Mechanics
Volume0
Issue number0
Early online date13 Sept 2022
DOIs
Publication statusPublished - 10 Oct 2022

Fingerprint

Dive into the research topics of 'Wave power extraction from a floating elastic disk-shaped wave energy converter'. Together they form a unique fingerprint.

Cite this