TY - JOUR
T1 - The Development and Internal Evaluation of a Predictive Model to Identify for Whom Mindfulness-Based Cognitive Therapy Offers Superior Relapse Prevention for Recurrent Depression Versus Maintenance Antidepressant Medication
AU - Cohen, Zachary D.
AU - DeRubeis, Robert J.
AU - Hayes, Rachel
AU - Watkins, Edward R.
AU - Lewis, Glyn
AU - Byng, Richard
AU - Byford, Sarah
AU - Crane, Catherine
AU - Kuyken, Willem
AU - Dalgleish, Tim
AU - Schweizer, Susanne
PY - 2022/4/29
Y1 - 2022/4/29
N2 - Depression is highly recurrent, even following successful pharmacological and/or psychological intervention. We aimed to develop clinical prediction models to inform adults with recurrent depression choosing between antidepressant medication (ADM) maintenance or switching to mindfulness-based cognitive therapy (MBCT). Using previously published data ( N = 424), we constructed prognostic models using elastic-net regression that combined demographic, clinical, and psychological factors to predict relapse at 24 months under ADM or MBCT. Only the ADM model (discrimination performance: area under the curve [AUC] = .68) predicted relapse better than baseline depression severity (AUC = .54; one-tailed DeLong’s test: z = 2.8, p = .003). Individuals with the poorest ADM prognoses who switched to MBCT had better outcomes compared with individuals who maintained ADM (48% vs. 70% relapse, respectively; superior survival times, z = −2.7, p = .008). For individuals with moderate to good ADM prognoses, both treatments resulted in similar likelihood of relapse. If replicated, the results suggest that predictive modeling can inform clinical decision-making around relapse prevention in recurrent depression.
AB - Depression is highly recurrent, even following successful pharmacological and/or psychological intervention. We aimed to develop clinical prediction models to inform adults with recurrent depression choosing between antidepressant medication (ADM) maintenance or switching to mindfulness-based cognitive therapy (MBCT). Using previously published data ( N = 424), we constructed prognostic models using elastic-net regression that combined demographic, clinical, and psychological factors to predict relapse at 24 months under ADM or MBCT. Only the ADM model (discrimination performance: area under the curve [AUC] = .68) predicted relapse better than baseline depression severity (AUC = .54; one-tailed DeLong’s test: z = 2.8, p = .003). Individuals with the poorest ADM prognoses who switched to MBCT had better outcomes compared with individuals who maintained ADM (48% vs. 70% relapse, respectively; superior survival times, z = −2.7, p = .008). For individuals with moderate to good ADM prognoses, both treatments resulted in similar likelihood of relapse. If replicated, the results suggest that predictive modeling can inform clinical decision-making around relapse prevention in recurrent depression.
U2 - 10.1177/21677026221076832
DO - 10.1177/21677026221076832
M3 - Article
SN - 2167-7026
VL - 0
JO - Clinical Psychological Science
JF - Clinical Psychological Science
IS - 0
ER -