The chemokine receptors <scp>CXCR</scp>1 and <scp>CXCR</scp>2 regulate oral cancer cell behaviour

Syed A. Khurram*, Lynne Bingle, Brenka M. Mccabe, Paula M. Farthing, Simon A. Whawell

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:sec><jats:title>Background</jats:title><jats:p>Chemokines regulate physiological and pathological leucocyte trafficking, and chemokine receptors play a role in tumorigenesis. Expression of interleukin‐8 (<jats:styled-content style="fixed-case">IL</jats:styled-content>‐8) receptors <jats:styled-content style="fixed-case">CXCR</jats:styled-content>1 and <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2 has been shown in oral squamous cell carcinoma (OSCC) but remains poorly characterised. This aim of this study was to investigate <jats:styled-content style="fixed-case">CXCR</jats:styled-content>1 and <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2 expression on normal oral keratinocytes (<jats:styled-content style="fixed-case">NOK</jats:styled-content>s) and oral cancer cell lines (<jats:styled-content style="fixed-case">OCCL</jats:styled-content>) and their relative response when exposed to <jats:styled-content style="fixed-case">IL</jats:styled-content>‐8 and growth‐related oncogene‐α (which selectively binds <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p><jats:styled-content style="fixed-case">mRNA</jats:styled-content> and protein expression was studied using <jats:styled-content style="fixed-case">RT‐PCR</jats:styled-content>, immunocytochemistry and flow cytometry. <jats:styled-content style="fixed-case">ELISA</jats:styled-content>s were used to investigate <jats:styled-content style="fixed-case">ERK</jats:styled-content>1/2 phosphorylation and <jats:styled-content style="fixed-case">MMP</jats:styled-content> production, whereas a <jats:styled-content style="fixed-case">MTS</jats:styled-content>‐based assay was employed to study proliferation. Migration assays were carried out using modified <jats:styled-content style="fixed-case">B</jats:styled-content>oyden chambers with a matrigel coating used for invasion assays.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>mRNA expression of <jats:styled-content style="fixed-case">CXCR</jats:styled-content>1 and <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2 was seen in both <jats:styled-content style="fixed-case">NOK</jats:styled-content>s and <jats:styled-content style="fixed-case">OCCL</jats:styled-content> with significantly higher protein expression in <jats:styled-content style="fixed-case">OCCL</jats:styled-content>. Exposure to <jats:styled-content style="fixed-case">IL</jats:styled-content>‐8 and <jats:styled-content style="fixed-case">GRO</jats:styled-content>α increased intracellular <jats:styled-content style="fixed-case">ERK</jats:styled-content> phosphorylation, proliferation, migration and invasion with <jats:styled-content style="fixed-case">OCCL</jats:styled-content> showing a greater response than <jats:styled-content style="fixed-case">NOK</jats:styled-content>s. These effects were mediated through <jats:styled-content style="fixed-case">CXCR</jats:styled-content>1 and <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2 (for <jats:styled-content style="fixed-case">IL</jats:styled-content>‐8) and <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2 (for <jats:styled-content style="fixed-case">GRO</jats:styled-content>α) as receptor‐blocking antibodies significantly inhibited the responses. <jats:styled-content style="fixed-case">IL</jats:styled-content>‐8 and <jats:styled-content style="fixed-case">GRO</jats:styled-content>α also increased <jats:styled-content style="fixed-case">MMP</jats:styled-content>‐9 release from <jats:styled-content style="fixed-case">NOK</jats:styled-content>s and <jats:styled-content style="fixed-case">OCCL</jats:styled-content> with significantly higher amounts released by <jats:styled-content style="fixed-case">OCCL</jats:styled-content>. However, an increase in <jats:styled-content style="fixed-case">MMP</jats:styled-content>‐7 production was only seen in <jats:styled-content style="fixed-case">OCCL</jats:styled-content>.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Functional <jats:styled-content style="fixed-case">CXCR</jats:styled-content>1 and <jats:styled-content style="fixed-case">CXCR</jats:styled-content>2 exist on normal and cancerous oral epithelial cells, and our data suggests a role for these receptors in oral cancer biology.</jats:p></jats:sec>
Original languageEnglish
Pages (from-to)667-674
Number of pages0
JournalJournal of Oral Pathology &amp; Medicine
Volume43
Issue number9
Early online date26 Jun 2014
DOIs
Publication statusPublished - Oct 2014

Fingerprint

Dive into the research topics of 'The chemokine receptors <scp>CXCR</scp>1 and <scp>CXCR</scp>2 regulate oral cancer cell behaviour'. Together they form a unique fingerprint.

Cite this