Abstract
Many theories of learning and memory (e.g., connectionist, associative, rational, exemplar based) produce psychological magnitude terms as output (i.e., numbers representing the momentary level of some subjective property). Many theories assume that these numbers may be translated into choice probabilities via the ratio rule, also known as the choice axiom (Luce, 1959) or the constant-ratio rule (Clarke, 1957). We present two categorization experiments employing artificial, visual, prototype-structured stimuli constructed from 12 symbols positioned on a grid. The ratio rule is shown to be incorrect for these experiments, given the assumption that the magnitude terms for each category are univariate functions of the number of category-appropriate symbols contained in the presented stimulus. A connectionist winner-take-all model of categorical decision (Wills & McLaren, 1997) is shown to account for our data given the same assumption. The central feature underlying the success of this model is the assumption that categorical decisions are based on a Thurstonian choice process (Thurstone, 1927, Case V) whose noise distribution is not double exponential in form.
Original language | English |
---|---|
Pages (from-to) | 983-1011 |
Number of pages | 0 |
Journal | Q J Exp Psychol A |
Volume | 53 |
Issue number | 4 |
DOIs | |
Publication status | Published - Nov 2000 |
Keywords
- Adult
- Choice Behavior
- Concept Formation
- Discrimination Learning
- Female
- Humans
- Male
- Pattern Recognition
- Visual
- Probability Learning
- Problem Solving