Abstract
<jats:p>We aimed to study whether short-duration vibration exercise or football sessions of two different durations acutely changed plasma markers of bone turnover and muscle strain. Inactive premenopausal women (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn fontstyle="italic">56</mml:mn></mml:math>) were randomized to complete a single bout of short (FG15) or long duration (FG60) small sided football or low magnitude whole body vibration training (VIB). Procollagen type 1 amino-terminal propeptide (P1NP) was increased during exercise for FG15 (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mn fontstyle="italic">51.6</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">23.0</mml:mn></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mn fontstyle="italic">56.5</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">22.5</mml:mn></mml:math> <jats:italic>μ</jats:italic>g·L<jats:sup>−1</jats:sup>, mean ± SD, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>P</mml:mi><mml:mo><</mml:mo><mml:mn fontstyle="italic">0.05</mml:mn></mml:math>) and FG60 (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mn fontstyle="italic">42.6</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">11.8</mml:mn></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mn fontstyle="italic">50.2</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">12.8</mml:mn></mml:math> <jats:italic>μ</jats:italic>g·L<jats:sup>−1</jats:sup>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mi>P</mml:mi><mml:mo><</mml:mo><mml:mn fontstyle="italic">0.05</mml:mn></mml:math>) but not for VIB (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mn fontstyle="italic">38.8</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">15.1</mml:mn></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mn fontstyle="italic">36.6</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">14.7</mml:mn></mml:math> <jats:italic>μ</jats:italic>g·L<jats:sup>−1</jats:sup>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mi>P</mml:mi><mml:mo>></mml:mo><mml:mn fontstyle="italic">0.05</mml:mn></mml:math>). An increase in osteocalcin was observed 48 h after exercise (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mi>P</mml:mi><mml:mo><</mml:mo><mml:mn fontstyle="italic">0.05</mml:mn></mml:math>), which did not differ between exercise groups. C-terminal telopeptide of type 1 collagen was not affected by exercise. Blood lactate concentration increased during exercise for FG15 (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mn fontstyle="italic">0.6</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">0.2</mml:mn></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:mn fontstyle="italic">3.4</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">1.2</mml:mn></mml:math> mM) and FG60 (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:mn fontstyle="italic">0.6</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">0.2</mml:mn></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mn fontstyle="italic">3.3</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">2.0</mml:mn></mml:math> mM), but not for VIB (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mn fontstyle="italic">0.6</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">0.2</mml:mn></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mn fontstyle="italic">0.8</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">0.4</mml:mn></mml:math> mM) (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:mi>P</mml:mi><mml:mo><</mml:mo><mml:mn fontstyle="italic">0.05</mml:mn></mml:math>). Plasma creatine kinase increased by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:mn fontstyle="italic">55</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">63</mml:mn></mml:math>% and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mn fontstyle="italic">137</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">119</mml:mn></mml:math>% 48 h after FG15 and FG60 (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mi>P</mml:mi><mml:mo><</mml:mo><mml:mn fontstyle="italic">0.05</mml:mn></mml:math>), but not after VIB (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mn fontstyle="italic">26</mml:mn><mml:mo>±</mml:mo><mml:mn fontstyle="italic">54</mml:mn></mml:math>%, NS). In contrast to the minor elevation in osteocalcin in response to a single session of vibration exercise, both short and longer durations of small sided football acutely increased plasma P1NP, osteocalcin, and creatine kinase. This may contribute to favorable effects of chronic training on musculoskeletal health.</jats:p>
Original language | English |
---|---|
Pages (from-to) | 1-10 |
Number of pages | 0 |
Journal | BioMed Research International |
Volume | 2016 |
Issue number | 0 |
DOIs | |
Publication status | Published - 2016 |