Abstract
The plastic range of crack tip opening displacement (CTOD) has been used for the experimental characterisation of fatigue crack growth for 2024-T3 and 7050-T6 aluminium alloys using digital image correlation (DIC). Analysis of a complete loading cycle allowed resolving the CTOD into elastic and plastic components. Fatigue tests were conducted on compact tension specimens with a thickness of 1 mm and a width of 20 mm at stress ratios of 0.1, 0.3 and 0.5. The range of plastic CTOD could be related linearly to da/dN independent of stress ratio for both alloys. To facilitate accurate measurements of CTOD, a method was developed for correctly locating the crack tip and a sensitivity analysis was performed to explore the effect of measurement position behind the crack tip on the CTOD. The plastic range of CTOD was demonstrated to be a suitable alternate parameter to the stress intensity factor range for characterising fatigue crack propagation. A particularly innovative aspect of the work is that the paper describes a DIC-based technique that the authors believe gives a reliable way to determine the appropriate position to measure CTOD.
Original language | English |
---|---|
Number of pages | 0 |
Journal | Fatigue and Fracture of Engineering Materials and Structures |
Volume | 0 |
Issue number | 0 |
Early online date | 3 Mar 2020 |
DOIs | |
Publication status | Published - 3 Mar 2020 |