Persistent reshaping of cohesive sediment towards stable flocs by turbulence

M Yu, X Yu, AJ Mehta, AJ Manning, F Khan, S Balachandar

Research output: Contribution to journalArticlepeer-review

22 Downloads (Pure)

Abstract

<jats:title>Abstract</jats:title><jats:p>Cohesive sediment forms flocs of various sizes and structures in the natural turbulent environment. Understanding flocculation is critical in accurately predicting sediment transport and biogeochemical cycles. In addition to aggregation and breakup, turbulence also reshapes flocs toward more stable structures. An Eulerian–Lagrangian framework has been implemented to investigate the effect of turbulence on flocculation by capturing the time-evolution of individual flocs. We have identified two floc reshaping mechanisms, namely breakage-regrowth and restructuring by hydrodynamic drag. Surface erosion is found to be the primary breakup mechanism for strong flocs, while fragile flocs tend to split into fragments of similar sizes. Aggregation of flocs of sizes comparable to or greater than the Kolmogorov scale is modulated by turbulence with lower aggregation efficiency. Our findings highlight the limiting effects of turbulence on both floc size and structure.</jats:p>
Original languageEnglish
Number of pages0
JournalScientific Reports
Volume13
Issue number1
Early online date31 Jan 2023
DOIs
Publication statusE-pub ahead of print - 31 Jan 2023

Fingerprint

Dive into the research topics of 'Persistent reshaping of cohesive sediment towards stable flocs by turbulence'. Together they form a unique fingerprint.

Cite this