Paediatric propofol pharmacokinetics: a multicentre study

AE Rigby‐Jones, MJ Priston, AR Wolf, JR Sneyd

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:p><jats:bold>Introduction: </jats:bold> Schuttler and Imhsens propofol pharmacokinetic (PK) model (1) based on pooled adult and paediatric data lacked information for the smallest patients. We conducted a pooled population analysis of available neonatal and paediatric propofol PK data. The variable clinical circumstances of the individual studies allowed us to explore health status as a PK model covariate.</jats:p><jats:p><jats:bold>Methods: </jats:bold> We combined raw propofol blood/plasma concentration vs time data, dosing information and demographic data from eight paediatric studies conducted by six research groups, with our data (2,3). The pooled data set comprised 197 individuals (2315 observations), aged 0.02–12.25 years (2.75–60.5 kg, median 15 kg). In this preliminary population PK analysis using NONMEM, the basic model structure was established before all model parameters were allometrically scaled to body weight. The influence of health status on paediatric propofol PK was explored.</jats:p><jats:p><jats:bold>Results: </jats:bold> In this 3‐compartment preliminary model, postcardiac surgery patients have significantly reduced metabolic clearance rates (31–45% less when compared with healthy children or noncardiac PICU patients). The volume of the deep peripheral compartment in critically ill and postcardiac surgery children is 319% and 205% larger, respectively, than in healthy children, see <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#t1">Table 1</jats:ext-link>.</jats:p><jats:p><jats:table-wrap> <jats:caption><jats:title> PK values for a child weighing 15 kg</jats:title></jats:caption> <jats:table frame="hsides"> <jats:col /> <jats:col /> <jats:col /> <jats:thead> <jats:tr> <jats:th>Parameter</jats:th> <jats:th>Typical Value</jats:th> <jats:th>95% Confidence Interval</jats:th> </jats:tr> </jats:thead> <jats:tbody> <jats:tr> <jats:td>CL (l·min<jats:sup>‐1</jats:sup>) </jats:td> <jats:td /> <jats:td /> </jats:tr> <jats:tr> <jats:td>Healthy</jats:td> <jats:td>0.614</jats:td> <jats:td>0.563–0.665</jats:td> </jats:tr> <jats:tr> <jats:td>PICU</jats:td> <jats:td>0.767</jats:td> <jats:td>0.628–0.906</jats:td> </jats:tr> <jats:tr> <jats:td>PICU cardiac</jats:td> <jats:td>0.421</jats:td> <jats:td>0.366–0.476</jats:td> </jats:tr> <jats:tr> <jats:td>Q2 (l·min<jats:sup>‐1</jats:sup>)</jats:td> <jats:td>0.839</jats:td> <jats:td>0.703–0.975</jats:td> </jats:tr> <jats:tr> <jats:td>Q3 (l·min<jats:sup>‐1</jats:sup>)</jats:td> <jats:td>0.252</jats:td> <jats:td>0.221–0.283</jats:td> </jats:tr> <jats:tr> <jats:td>V1 (l)</jats:td> <jats:td>7.76</jats:td> <jats:td>6.33–9.19</jats:td> </jats:tr> <jats:tr> <jats:td>V2 (l)</jats:td> <jats:td>14.4</jats:td> <jats:td>12.8–16.0</jats:td> </jats:tr> <jats:tr> <jats:td>V3 (l)</jats:td> <jats:td /> <jats:td /> </jats:tr> <jats:tr> <jats:td>Healthy</jats:td> <jats:td>83.9</jats:td> <jats:td>61.4–106</jats:td> </jats:tr> <jats:tr> <jats:td>PICU</jats:td> <jats:td>268</jats:td> <jats:td>183–353</jats:td> </jats:tr> <jats:tr> <jats:td>PICU cardiac</jats:td> <jats:td>172</jats:td> <jats:td>117–227</jats:td> </jats:tr> </jats:tbody> </jats:table> </jats:table-wrap></jats:p>
Original languageEnglish
Pages (from-to)610-610
Number of pages0
JournalPediatric Anesthesia
Volume17
Issue number6
Early online date7 May 2007
DOIs
Publication statusPublished - Jun 2007

Fingerprint

Dive into the research topics of 'Paediatric propofol pharmacokinetics: a multicentre study'. Together they form a unique fingerprint.

Cite this