Numerical and experimental modelling of wave loads on thin porous sheets

Ed Mackay*, Lars Johanning, Dezhi Ning, Dongsheng Qiao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work considers the numerical modelling of wave interaction with thin porous structures, based on tests conducted in simplified conditions. Wave flume tests were conducted to measure the wave loads on thin porous sheets extending over the full water column. The porous sheets tested had a range of porosities, hole separation distances and thicknesses. Numerical and analytic models for the wave forces on the porous sheet are formulated under the assumptions of either a linear or quadratic pressure loss across the porous sheet. An iterative boundary element method (BEM) model is formulated to solve the quadratic pressure loss across the porous sheet. It is shown that the assumption of a linear pressure loss at the porous boundary is inadequate to capture the variation in the wave load with both wave frequency and amplitude, but that the quadratic model is in good agreement with the measured forces. The porosity of the sheet is shown to have the dominant effect on the wave loads. The hole separation distance affects the phase of the force on the porous wall, but has only a small effect on the amplitude of the force. The sheet thickness is shown to have a small effect on the amplitude of the force but a significant effect on the phase of the force. The results are of interest for numerical modelling of structures with thin porous boundaries in a wide range of contexts such as breakwaters, aquaculture and offshore structures with porous elements designed to reduce loads.

Original languageEnglish
Title of host publicationRodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology
PublisherThe American Society of Mechanical Engineers(ASME)
ISBN (Electronic)9780791858882
DOIs
Publication statusPublished - 2019
EventASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019 - Glasgow, United Kingdom
Duration: 9 Jun 201914 Jun 2019

Publication series

NameProceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
Volume9

Conference

ConferenceASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019
Country/TerritoryUnited Kingdom
CityGlasgow
Period9/06/1914/06/19

ASJC Scopus subject areas

  • Ocean Engineering
  • Energy Engineering and Power Technology
  • Mechanical Engineering

Keywords

  • Linear Pressure Drop
  • Perforated
  • Permeable
  • Porous
  • Quadratic Pressure Drop

Fingerprint

Dive into the research topics of 'Numerical and experimental modelling of wave loads on thin porous sheets'. Together they form a unique fingerprint.

Cite this