Monopile-mounted wave energy converter for a hybrid wind-wave system

C. Perez-Collazo*, R. Pemberton, D. Greaves, G. Iglesias

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Downloads (Pure)

Abstract

Multipurpose platforms are innovative solutions to combine the sustainable exploitation of multiple marine resources. Among them, hybrid wind-wave systems stand out due to the multiple synergies between these two forms of marine renewable energy. The objective of this work is to develop a hybrid system for monopile substructures, which are currently the prevailing type of substructure for offshore wind turbines, and more specifically to focus on the wave energy converter sub-system, which consists in an oscillating water column. For this purpose, an in-depth experimental campaign was carried out using a 1:40 scale model of the wave energy converter sub-system and the monopile substructure, considering regular and irregular waves. Based on the experimental results the performance of the device and its interaction with the wave field were characterised – a fundamental step to fully understand the benefits and limitations of this hybrid wind-wave system, which sets the basis for its future development. Regarding the performance, the best efficiency was obtained with the turbine damping corresponding to a 0.5% orifice size, and two resonance peaks were identified (T = 9 and 6 s). As for the interaction of the hybrid system with the wave field, between 5% and 66% of the incident wave power is reflected and between 3% and 45%, transmitted. The wave period was found to be the parameter that most influenced wave run-up on the substructure. This characterisation of the behaviour of the hybrid system shows that it is indeed a promising option for further development.

Original languageEnglish
Article number111971
JournalEnergy Conversion and Management
Volume199
DOIs
Publication statusPublished - 1 Nov 2019

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Keywords

  • Hybrid wind-wave
  • OWC
  • Physical modelling
  • Wave energy, Offshore Wind

Fingerprint

Dive into the research topics of 'Monopile-mounted wave energy converter for a hybrid wind-wave system'. Together they form a unique fingerprint.

Cite this