TY - JOUR
T1 - Modelling the Eddystone Lighthouse response to wave loading
AU - Trinh, Quang
AU - Raby, Alison
AU - Banfi, Davide
AU - Corrado, Mauro
AU - Chiaia, Bernardino
AU - Rafiq, Yaqub
AU - Cali, Federico
PY - 2016/10/15
Y1 - 2016/10/15
N2 - The Eddystone Lighthouse is an imposing granite structure that has guided mariners through the treacherous waters off the Plymouth coast for nearly 150 years. The General Lighthouse Authorities (GLAs) of the UK and Ireland, recognising the continuing importance of rock-mounted lighthouses as physical aids for navigation, funded a pilot project, commissioning Plymouth University to monitor the tower. The present
study aims to provide more information on the structural behaviour of the Eddystone Lighthouse under the impacts from wave loading, through the utilisation of a 3D finite element model. Data from geophones, an offshore wave buoy and video cameras installed on the tower have been used to calibrate and validate the model; in particular, the wave that caused the maximum displacement during the winter 2013/2014 storms has been considered. The point of application of the wave load is important in the tower’s structural response; the lighthouse being especially vulnerable to larger displacements when the wave acts above its cylindrical base. Finite element analysis suggests that the lighthouse is stable with regard to material failure, and for failure mechanisms of overturning and sliding there are factors of safety of 6.3 and 8.0 respectively. A hypothetical unbroken wave of 17.5 m height would be required to overturn the lighthouse, and one of height 17 m would cause cracking at the base, but in such a location these waves would not be possible.
AB - The Eddystone Lighthouse is an imposing granite structure that has guided mariners through the treacherous waters off the Plymouth coast for nearly 150 years. The General Lighthouse Authorities (GLAs) of the UK and Ireland, recognising the continuing importance of rock-mounted lighthouses as physical aids for navigation, funded a pilot project, commissioning Plymouth University to monitor the tower. The present
study aims to provide more information on the structural behaviour of the Eddystone Lighthouse under the impacts from wave loading, through the utilisation of a 3D finite element model. Data from geophones, an offshore wave buoy and video cameras installed on the tower have been used to calibrate and validate the model; in particular, the wave that caused the maximum displacement during the winter 2013/2014 storms has been considered. The point of application of the wave load is important in the tower’s structural response; the lighthouse being especially vulnerable to larger displacements when the wave acts above its cylindrical base. Finite element analysis suggests that the lighthouse is stable with regard to material failure, and for failure mechanisms of overturning and sliding there are factors of safety of 6.3 and 8.0 respectively. A hypothetical unbroken wave of 17.5 m height would be required to overturn the lighthouse, and one of height 17 m would cause cracking at the base, but in such a location these waves would not be possible.
KW - Finite element analysis
KW - Structural response
KW - Wave loading
UR - https://pearl.plymouth.ac.uk/context/secam-research/article/1086/viewcontent/Eddystone_20lighthouse_20manuscript_20accepted.pdf
U2 - 10.1016/j.engstruct.2016.06.027
DO - 10.1016/j.engstruct.2016.06.027
M3 - Article
SN - 0141-0296
VL - 125
SP - 566
EP - 578
JO - Engineering Structures
JF - Engineering Structures
IS - 0
ER -