Metabolomics and Marine Biotechnology: Coupling Metabolite Profiling and Organism Biology for the Discovery of New Compounds

Miriam Reverter*, Sven Rohde, Christelle Parchemin, Nathalie Tapissier-Bontemps, Peter J. Schupp

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:p>The high diversity of marine natural products represents promising opportunities for drug discovery, an important area in marine biotechnology. Within this context, high-throughput techniques such as metabolomics are extremely useful in unveiling unexplored chemical diversity at much faster rates than classical bioassay-guided approaches. Metabolomics approaches enable studying large sets of metabolites, even if they are produced at low concentrations. Although, metabolite identification remains the main metabolomics bottleneck, bioinformatic tools such as molecular networks can lead to the annotation of unknown metabolites and discovery of new compounds. A metabolomic approach in drug discovery has two major advantages: it enables analyses of multiple samples, allowing fast dereplication of already known compounds and provides a unique opportunity to relate metabolite profiles to organisms’ biology. Understanding the ecological and biological factors behind a certain metabolite production can be extremely useful in enhancing compound yields, optimizing compound extraction or in selecting bioactive compounds. Metazoan-associated microbiota are often responsible for metabolite synthesis, however, classical approaches only allow studying metabolites produced from cultivatable microbiota, which often differ from the compounds produced within the host. Therefore, coupling holobiome metabolomics with microbiome analysis can bring new insights to the role of microbiota in compound production. The ultimate potential of metabolomics is its coupling with other “omics” (i.e., transcriptomics and metagenomics). Although, such approaches are still challenging, especially in non-model species where genomes have not been annotated, this innovative approach is extremely valuable in elucidating gene clusters associated with biosynthetic pathways and will certainly become increasingly important in marine drug discovery.</jats:p>
Original languageEnglish
Number of pages0
JournalFrontiers in Marine Science
Volume7
Issue number0
DOIs
Publication statusE-pub ahead of print - 10 Dec 2020

Fingerprint

Dive into the research topics of 'Metabolomics and Marine Biotechnology: Coupling Metabolite Profiling and Organism Biology for the Discovery of New Compounds'. Together they form a unique fingerprint.

Cite this