Local model and controller network design for a single-link flexible manipulator

S. K. Sharma*, R. Sutton, M. O. Tokhi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This paper describes a new genetic learning approach to the construction of a local model network (LMN) and design of a local controller network (LCN) with application to a single-link flexible manipulator. A highly nonlinear flexible manipulator system is modelled using an LMN comprising Autoregressive–moving-average model with exogenous inputs (ARMAX) type local models (LMs) whereas linear Proportional-integral-derivative (PID) type local controllers (LCs) are used to design an LCN. In addition to allowing the simultaneous optimisation of the number of LMs and LCs, model parameters and interpolation function parameters, the approach provides a flexible framework for targeting transparency and generalisation. Simulation results confirm the excellent nonlinear modelling properties of an LM network and illustrate the potential benefits of the proposed LM control scheme.
Original languageEnglish
Number of pages0
JournalJournal of Intelligent & Robotic Systems
Volume2013
Issue number0
DOIs
Publication statusPublished - 8 Jun 2013

Fingerprint

Dive into the research topics of 'Local model and controller network design for a single-link flexible manipulator'. Together they form a unique fingerprint.

Cite this