LabPipe: an extensible bioinformatics toolkit to manage experimental data and metadata

Bo Zhao, Luke Bryant, Rebecca Cordell, Michael Wilde, Dahlia Salman, Dorota Ruszkiewicz, Wadah Ibrahim, Amisha Singapuri, Tim Coats, Erol Gaillard, Caroline Beardsmore, Toru Suzuki, Leong Ng, Neil Greening, Paul Thomas, Paul Monks, Christopher Brightling, Salman Siddiqui, Robert C. Free*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Data handling in clinical bioinformatics is often inadequate. No freely available tools provide straightforward approaches for consistent, flexible metadata collection and linkage of related experimental data generated locally by vendor software.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>To address this problem, we created LabPipe, a flexible toolkit which is driven through a local client that runs alongside vendor software and connects to a light-weight server. The toolkit allows re-usable configurations to be defined for experiment metadata and local data collection, and handles metadata entry and linkage of data. LabPipe was piloted in a multi-site clinical breathomics study.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>LabPipe provided a consistent, controlled approach for handling metadata and experimental data collection, collation and linkage in the exemplar study and was flexible enough to deal effectively with different data handling challenges.</jats:p> </jats:sec>
Original languageEnglish
Number of pages0
JournalBMC Bioinformatics
Volume21
Issue number1
DOIs
Publication statusPublished - Dec 2020

Fingerprint

Dive into the research topics of 'LabPipe: an extensible bioinformatics toolkit to manage experimental data and metadata'. Together they form a unique fingerprint.

Cite this