Invasive macroalgae in native seagrass beds: vectors of spread and impacts

Louise Firth, Andy Foggo, Thomas Watts, Antony Knights, Stacey DeAmicis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Downloads (Pure)

Abstract

Background and Aims
Worldwide, invasive species are spreading through marine systems at an unprecedented rate with both positive and negative consequences for ecosystems and the biological functioning of organisms. Human activities from shipping to habitat damage and modification are known vectors of spread, although biological interactions including epibiosis are increasingly recognized as potentially important to introduction into susceptible habitats.

Methods
We assessed a novel mechanism of spread – limpets as transporters of an invasive alga, Sargassum muticum, into beds of the seagrass Zostera marina – and the physiological impact of its invasion. The association of S. muticum with three limpet species and other habitats was assessed using intertidal surveys on rocky shores and snorkelling at two seagrass sites in the UK. A 4-year field study tested the effect of S. muticum on Z. marina shoot density, dry weight and phenolic compounds (caffeic and tannic acid) content, and a laboratory experiment tested the impact of S. muticum on nutrient partitioning (C/H/N/P/Si), photosynthetic efficiency (Fv/Fm) and growth of Z. marina.

Results
On rocky shores 15 % of S. muticum occurrences were attached to the shells of live limpets. In seagrass beds 5 % of S. muticum occurrences were attached to the shells of dead limpets. The remainder were attached to rock, to cobblestones, to the seagrass matrix or embedded within the sand. Z. marina density and phenolics content was lower when S. muticum co-occurred with it. Over 3 years, photosynthetic responses of Z. marina to S. muticum were idiosyncratic, and S. muticum had no effect on nutrient partitioning in Z. marina.

Conclusions
Our results show limpets support S. muticum as an epibiont and may act as a previously unreported transport mechanism introducing invaders into sensitive habitats. S. muticum reduced production of phenolics in Z. marina, which may weaken its defensive capabilities and facilitate proliferation of S. muticum. The effect of S. muticum on Z. marina photosynthesis requires further work but having no effect on the capacity of Z. marina to sequester nutrients suggests a degree of resilience to this invader.
Original languageEnglish
Pages (from-to)41-50
Number of pages10
JournalAnnals of Botany
Volume133
Issue number1
DOIs
Publication statusPublished - 3 Oct 2023

Keywords

  • Biochemistry, ecosystem engineer, invasion, limpet, Sargassum muticum, seagrass, vector, Zostera marina, allelopathy

Fingerprint

Dive into the research topics of 'Invasive macroalgae in native seagrass beds: vectors of spread and impacts'. Together they form a unique fingerprint.

Cite this