TY - JOUR
T1 - Hydrological and geochemical responses of fire in a shallow cave system
AU - Bian, Fang
AU - Coleborn, Katie
AU - Flemons, Ingrid
AU - Baker, Andy
AU - Treble, Pauline C.
AU - Hughes, Catherine E.
AU - Baker, Andrew
AU - Andersen, Martin S.
AU - Tozer, Mark G.
AU - Duan, Wuhui
AU - Fogwill, Christopher J.
AU - Fairchild, Ian J.
N1 - Publisher Copyright:
© 2019
PY - 2019/4/20
Y1 - 2019/4/20
N2 - The influence of wildfire on surface soil and hydrology has been widely investigated, while its impact on the karst vadose zone is still poorly understood. A moderate to severe experimental fire was conducted on a plot (10 m × 10 m) above the shallow Wildman's Cave at Wombeyan Caves, New South Wales, Australia in May 2016. Continuous sampling of water stable isotopes, inorganic geochemistry and drip rates were conducted from Dec 2014 to May 2017. After the fire, drip discharge patterns were significantly altered, which is interpreted as the result of increased preferential flows and decreased diffuse flows in the soil. Post-fire drip water δ 18 O decreased by 6.3‰ in the first month relative to the average pre-fire isotopic composition. Post-fire monitoring showed an increase in drip water δ 18 O in the following six months. Bedrock related solutes (calcium, magnesium, strontium) decreased rapidly after the fire due to reduced limestone dissolution time and potentially reduced soil CO 2 . Soil- and ash-derived solutes (boron, lead, potassium, sodium, silicon, iodine and iron) all decreased after the fire due to volatilisation at high temperatures, except for SO 4 2− . This is the first study to understand the hydrological impact from severe fires conducted on a karst system. It provides new insights on the cave recharge process, with a potential explanation for the decreased d18O in speleothem-based fire study, and also utilise the decreased bedrock solutes to assess the wildfire impacts both in short and long time scales.
AB - The influence of wildfire on surface soil and hydrology has been widely investigated, while its impact on the karst vadose zone is still poorly understood. A moderate to severe experimental fire was conducted on a plot (10 m × 10 m) above the shallow Wildman's Cave at Wombeyan Caves, New South Wales, Australia in May 2016. Continuous sampling of water stable isotopes, inorganic geochemistry and drip rates were conducted from Dec 2014 to May 2017. After the fire, drip discharge patterns were significantly altered, which is interpreted as the result of increased preferential flows and decreased diffuse flows in the soil. Post-fire drip water δ 18 O decreased by 6.3‰ in the first month relative to the average pre-fire isotopic composition. Post-fire monitoring showed an increase in drip water δ 18 O in the following six months. Bedrock related solutes (calcium, magnesium, strontium) decreased rapidly after the fire due to reduced limestone dissolution time and potentially reduced soil CO 2 . Soil- and ash-derived solutes (boron, lead, potassium, sodium, silicon, iodine and iron) all decreased after the fire due to volatilisation at high temperatures, except for SO 4 2− . This is the first study to understand the hydrological impact from severe fires conducted on a karst system. It provides new insights on the cave recharge process, with a potential explanation for the decreased d18O in speleothem-based fire study, and also utilise the decreased bedrock solutes to assess the wildfire impacts both in short and long time scales.
KW - Fire
KW - Groundwater
KW - Hydrograph analysis
KW - Karst
UR - http://www.scopus.com/inward/record.url?scp=85060350353&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2019.01.102
DO - 10.1016/j.scitotenv.2019.01.102
M3 - Article
C2 - 30690353
AN - SCOPUS:85060350353
SN - 0048-9697
VL - 662
SP - 180
EP - 191
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -