TY - JOUR
T1 - Green Synthesis of Silver Nanoparticles from Diospyros villosa Extracts and Evaluation of Antioxidant, Antimicrobial and Anti-Quorum Sensing Potential
AU - Adu, OT
AU - Mohamed, Farzana
AU - Naidoo, Yougasphree
AU - Adu, TS
AU - Chenia, Hafizah
AU - Dewir, Yaser Hassan
AU - Rihan, Hail
PY - 2022/9/26
Y1 - 2022/9/26
N2 - The biosynthesis of silver nanoparticles (AgNPs) from Diospyros villosa leaves and stem bark extracts is described. The stem bark AgNPs of D. villosa synthesized at 80 °C (S80) showed good scavenging activity with a lower IC50 value of 8.75 µg·mL−1 compared to ascorbic acid (9.58 µg·mL−1). The total phenol content of the S80 AgNPs was measured and found to be 10.22 ± 0.14 mg.g−1 gallic acid equivalence (GAE). Bacterial growth inhibition (% GI) and violacein inhibition (% VI) of 10.08% and 58.83%, respectively, was observed against C.subtsugae CV017 with leaf AgNPs synthesized at 80 °C (L80) at 80 μg·mL−1. Stem bark AgNPs synthesized at room temperature (SRT) also indicated % GI of 13.83% and % VI of 65.97% against C. subtsugae CV017 at 160 μg·mL−1. Leaf AgNPs of D. villosa synthesized at room temperature (LRT), showed % GI of 29.07% and % VI of 56.53%, respectively, against C. violaceum ATCC 12472 at 320 μg·mL−1. The L80 and SRT at 160 μg·mL−1 and LRT at 320 μg·mL−1 may be considered as potential QS inhibitors following their activity against C. subtsugae CV017 and C. violaceum ATCC 12472, respectively. Therefore, D. villosa represents a potential source of antioxidants as well as an anti-quorum sensing therapeutic candidate for the control of Gram-negative bacterial infections.
AB - The biosynthesis of silver nanoparticles (AgNPs) from Diospyros villosa leaves and stem bark extracts is described. The stem bark AgNPs of D. villosa synthesized at 80 °C (S80) showed good scavenging activity with a lower IC50 value of 8.75 µg·mL−1 compared to ascorbic acid (9.58 µg·mL−1). The total phenol content of the S80 AgNPs was measured and found to be 10.22 ± 0.14 mg.g−1 gallic acid equivalence (GAE). Bacterial growth inhibition (% GI) and violacein inhibition (% VI) of 10.08% and 58.83%, respectively, was observed against C.subtsugae CV017 with leaf AgNPs synthesized at 80 °C (L80) at 80 μg·mL−1. Stem bark AgNPs synthesized at room temperature (SRT) also indicated % GI of 13.83% and % VI of 65.97% against C. subtsugae CV017 at 160 μg·mL−1. Leaf AgNPs of D. villosa synthesized at room temperature (LRT), showed % GI of 29.07% and % VI of 56.53%, respectively, against C. violaceum ATCC 12472 at 320 μg·mL−1. The L80 and SRT at 160 μg·mL−1 and LRT at 320 μg·mL−1 may be considered as potential QS inhibitors following their activity against C. subtsugae CV017 and C. violaceum ATCC 12472, respectively. Therefore, D. villosa represents a potential source of antioxidants as well as an anti-quorum sensing therapeutic candidate for the control of Gram-negative bacterial infections.
UR - https://pearl.plymouth.ac.uk/context/bms-research/article/1763/viewcontent/plants_11_02514.pdf
U2 - 10.3390/plants11192514
DO - 10.3390/plants11192514
M3 - Article
SN - 2223-7747
VL - 11
JO - Plants
JF - Plants
IS - 19
ER -