G‐protein coupled receptor‐mediated nutrient sensing and developmental control in <scp><i>A</i></scp><i>spergillus nidulans</i>

Neil Andrew Brown*, Reis TF dos, Laure Nicolas Annick Ries, Camila Caldana, Jae Hyung Mah, Jae Hyuk Yu, Jeffrey M. Macdonald, Gustavo Henrique Goldman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:title>Summary</jats:title><jats:p>Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. <jats:styled-content style="fixed-case">G</jats:styled-content>‐protein coupled receptors (<jats:styled-content style="fixed-case">GPCRs</jats:styled-content>) are the largest family of transmembrane receptors. The <jats:styled-content style="fixed-case"><jats:italic>A</jats:italic></jats:styled-content><jats:italic>spergillus nidulans</jats:italic> genome encodes 16 putative <jats:styled-content style="fixed-case">GPCRs</jats:styled-content>, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative <jats:styled-content style="fixed-case">GPCR</jats:styled-content>, <jats:italic>gpr</jats:italic><jats:styled-content style="fixed-case"><jats:italic>H</jats:italic></jats:styled-content>, during carbon starvation. <jats:styled-content style="fixed-case">GprH</jats:styled-content> appears conserved throughout numerous filamentous fungi. Here, we reveal that <jats:styled-content style="fixed-case">GprH</jats:styled-content> is a putative receptor involved in glucose and tryptophan sensing. The absence of <jats:styled-content style="fixed-case">GprH</jats:styled-content> results in a reduction in c<jats:styled-content style="fixed-case">AMP</jats:styled-content> levels and <jats:styled-content style="fixed-case">PKA</jats:styled-content> activity upon adding glucose or tryptophan to starved cells. <jats:styled-content style="fixed-case">GprH</jats:styled-content> is pre‐formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. <jats:styled-content style="fixed-case">GprH</jats:styled-content> also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient‐sensing system functions upstream of the c<jats:styled-content style="fixed-case">AMP</jats:styled-content>‐<jats:styled-content style="fixed-case">PKA</jats:styled-content> pathway, influences primary metabolism and hyphal growth, while represses sexual development in <jats:styled-content style="fixed-case"><jats:italic>A</jats:italic></jats:styled-content><jats:italic>. nidulans</jats:italic>.</jats:p>
Original languageEnglish
Pages (from-to)420-439
Number of pages0
JournalMolecular Microbiology
Volume98
Issue number3
Early online date15 Aug 2015
DOIs
Publication statusPublished - Oct 2015

Fingerprint

Dive into the research topics of 'G‐protein coupled receptor‐mediated nutrient sensing and developmental control in <scp><i>A</i></scp><i>spergillus nidulans</i>'. Together they form a unique fingerprint.

Cite this