Abstract
We report here that metabotropic glutamate 1a (mGlu1a) receptors, stably expressed in CHO cells, stimulate phospholipase D (PLD) activity. Several mGlu receptor agonists were found to exert this effect, with a rank order of potency of: L-quisqualate>L-glutamate>(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD]=(S)-3,5-dihydroxyphenylglycine [(S)-DHPG]. Both L-glutamate- and (1S,3R)-ACPD-stimulated PLD activity were attenuated by the selective mGlu receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine. mGlu1a receptor-stimulated PLD was inhibited either by the selective protein kinase C (PKC) inhibitor, GF109203X, or via PKC downregulation. MGlu1a receptor-PLD coupling required extracellular Ca2+ and was sensitive to La3+ and Zn2+, inhibitors of intracellular Ca2+ store-operated Ca2+ influx. mGlu1a receptor-PLD coupling was inhibited by the selective tyrosine kinase inhibitor, genistein. In addition, mGlu1a receptor-PLD coupling was also inhibited by cell transfection with the selective Rho (small GTP-binding protein) inhibitors: C3-exoenzyme and dominant negative mutant RhoA constructs. Brefeldin A, a selective ADP-ribosylation factor (ARF) inhibitor, and a dominant negative ARF6 mutant, failed to significantly influence mGlu1a receptor-stimulated PLD activity. We conclude that mGlu1a receptors activate PLD via a mechanism that is dependent on extracellular Ca2+, PKC, tyrosine kinase and RhoA but independent of ARF.
Original language | English |
---|---|
Pages (from-to) | 1-8 |
Number of pages | 0 |
Journal | Neuropharmacology |
Volume | 42 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2002 |
Keywords
- Animals
- CHO Cells
- Calcium
- Cricetinae
- Down-Regulation
- Excitatory Amino Acid Antagonists
- Extracellular Space
- GTP-Binding Proteins
- Phospholipase D
- Protein Kinase C
- Protein-Tyrosine Kinases
- Rats
- Receptors
- Metabotropic Glutamate
- Transfection
- rhoA GTP-Binding Protein