Finite element analysis of natural fiber composites using a self-updating model

Zia Javanbakht*, Wayne Hall, Amandeep Singh Virk, John Summerscales, Andreas Öchsner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Downloads (Pure)

Abstract

<jats:p> The aim of the current work was to illustrate the effect of the fibre area correction factor on the results of modelling natural fibre-reinforced composites. A mesoscopic approach is adopted to represent the stochastic heterogeneity of the composite, i.e. a meso-structural numerical model was prototyped using the finite element method including quasi-unidirectional discrete fibre elements embedded in a matrix. The model was verified by the experimental results from previous work on jute fibres but is extendable to every natural fibre with cross-sectional non-uniformity. A correction factor was suggested to fine-tune both the analytical and numerical models. Moreover, a model updating technique for considering the size-effect of fibres is introduced and its implementation was automated by means of FORTRAN subroutines and Python scripts. It was shown that correcting and updating the fibre strength is critical to obtain accurate macroscopic response of the composite when discrete modelling of fibres is intended. Based on the current study, it is found that consideration of the effect of flaws on the strength of natural fibres and inclusion of the fibre area correction factor are crucial to obtain realistic results. </jats:p>
Original languageEnglish
Pages (from-to)3275-3286
Number of pages0
JournalJournal of Composite Materials
Volume54
Issue number23
Early online date24 Mar 2020
DOIs
Publication statusPublished - 1 Sept 2020

Fingerprint

Dive into the research topics of 'Finite element analysis of natural fiber composites using a self-updating model'. Together they form a unique fingerprint.

Cite this