Abstract
Co-deployment of two reagentless UV sensors for high temporal resolution (15 min) real time determination of wintertime DOC and nitrate-N export from a grassland lysimeter plot (North Wyke, Devon, UK) is reported. They showed rapid, transient but high impact perturbations of DOC (5.3-23 mg CL(-1)) and nitrate-N export after storm/snow melt which discontinuous sampling would not have observed. During a winter freeze/thaw cycle, DOC export (1.25 kg Cha(-1)d(-1)) was significantly higher than typical UK catchment values (maximum 0.25 kg Chad(-1)) and historical North Wyke data (0.7 kg Cha(-1)d(-1)). DOC concentrations were inversely correlated with the key DOC physico-chemical drivers of pH (January r=-0.65), and conductivity (January r=-0.64). Nitrate-N export (0.8-1.5 mg NL(-1)) was strongly correlated with DOC export (r ≥ 0.8). The DOC:NO3-N molar ratios showed that soil microbial N assimilation was not C limited and therefore high N accrual was not promoted in the River Taw, which is classified as a nitrate vulnerable zone (NVZ). The sensor was shown to be an effective sentinel device for identifying critical periods when rapid ecosystem N accumulation could be triggered by a shift in resource stoichiometry. It is therefore a useful tool to help evaluate land management strategies and impacts from climate change and intensive agriculture.
Original language | English |
---|---|
Pages (from-to) | 384-391 |
Number of pages | 0 |
Journal | Sci Total Environ |
Volume | 0 |
Issue number | 0 |
DOIs | |
Publication status | Published - 1 Jul 2013 |
Keywords
- Carbon Cycle
- Climate Change
- England
- Environmental Monitoring
- Humic Substances
- Nitrates
- Nitrogen Cycle
- Rain
- Seasons
- Snow
- Soil
- Time Factors
- Ultraviolet Rays
- Water Cycle