Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells.

Anwar J. Almzaiel, Richard Billington, Gary Smerdon, A. John Moody*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

AIMS: Neutrophil apoptosis is important in the resolution of inflammation in chronic wounds. Hyperbaric oxygen (HBO) therapy, an intermittent inhalation of 100% oxygen at greater than atmospheric pressure, appears to be an effective treatment for chronic wounds. The aim was to use HL-60 cells differentiated using all-trans retinoic acid (ATRA) (neutrophil-like cells) to test the hypothesis that an HBO-induced increase in antimicrobial activity might lead to an increase in apoptosis, thereby contributing to neutrophil clearance from chronic wounds. MAIN METHODS: ATRA differentiated HL-60 cells, an in vitro neutrophil model, were used to test the effects of normoxia, hypoxia (5% O2), hyperoxia (95% O2), hyperbaric normoxia (pressure) (8.8% O2 at 2.4 ATA) and HBO (97.9% O2 at 2.4 ATA) on antimicrobial function [NBT staining, superoxide and H2O2 production, and phagocytosis activity] and apoptosis (caspase 3/7 activity and morphological changes observed using SYBR Safe staining). KEY FINDINGS: A single 90min HBO exposure caused an increase in the respiratory burst activity of neutrophil-like cells post exposure. Phagocytosis of Staphylococcus aureus was also increased. HBO pre-treatment had a pro-apoptotic effect, increasing caspase 3/7 activity and causing morphological changes associated with apoptosis. SIGNIFICANCE: The potential detrimental effect of enhanced antimicrobial activity induced by HBO may be offset by enhanced apoptosis. Both hyperoxia and pressure alone seemed to contribute to the HBO-induced increases in antimicrobial activity and apoptosis, although there was no consistent pattern. These data contribute to explaining the effectiveness of HBO in the treatment of chronic wounds.
Original languageEnglish
Pages (from-to)125-131
Number of pages0
JournalLife Sci
Volume93
Issue number0
DOIs
Publication statusPublished - 30 Jul 2013

Keywords

  • All-trans retinoic acid
  • Chronic wounds
  • Inflammation
  • Phagocytosis
  • Reactive oxygen species
  • Apoptosis
  • Caspase 3
  • Caspase 7
  • Cell Death
  • Cell Differentiation
  • HL-60 Cells
  • Humans
  • Hydrogen Peroxide
  • Hyperbaric Oxygenation
  • Neutrophils
  • Staphylococcus aureus
  • Superoxides
  • Tretinoin
  • Wounds and Injuries

Fingerprint

Dive into the research topics of 'Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells.'. Together they form a unique fingerprint.

Cite this