TY - JOUR
T1 - Development of a modified Cambridge Multimorbidity Score for use with SNOMED CT
T2 - an observational English primary care sentinel network study
AU - Tsang, Ruby S.M.
AU - Joy, Mark
AU - Whitaker, Heather
AU - Sheppard, James P.
AU - Williams, John
AU - Sherlock, Julian
AU - Mayor, Nikhil
AU - Meza-Torres, Bernardo
AU - Button, Elizabeth
AU - Williams, Alice J.
AU - Kar, Debasish
AU - Delanerolle, Gayathri
AU - McManus, Richard
AU - Richard Hobbs, F. D.
AU - de Lusignan, Simon
N1 - Publisher Copyright:
© 2023 Royal College of General Practitioners. All rights reserved.
PY - 2023/6
Y1 - 2023/6
N2 - Background People with multiple health conditions are more likely to have poorer health outcomes and greater care and service needs; a reliable measure of multimorbidity would inform management strategies and resource allocation. Aim To develop and validate a modified version of the Cambridge Multimorbidity Score in an extended age range, using clinical terms that are routinely used in electronic health records across the world (Systematized Nomenclature of Medicine — Clinical Terms, SNOMED CT). Design and setting Observational study using diagnosis and prescriptions data from an English primary care sentinel surveillance network between 2014 and 2019. Method In this study new variables describing 37 health conditions were curated and the associations modelled between these and 1-year mortality risk using the Cox proportional hazard model in a development dataset (n= 300 000). Two simplified models were then developed — a 20-condition model as per the original Cambridge Multimorbidity Score and a variable reduction model using backward elimination with Akaike information criterion as the stopping criterion. The results were compared and validated for 1-year mortality in a synchronous validation dataset (n= 150 000), and for 1-year and 5-year mortality in an asynchronous validation dataset (n= 150 000). Results The final variable reduction model retained 21 conditions, and the conditions mostly overlapped with those in the 20-condition model. The model performed similarly to the 37- and 20-condition models, showing high discrimination and good calibration following recalibration. Conclusion This modified version of the Cambridge Multimorbidity Score allows reliable estimation using clinical terms that can be applied internationally across multiple healthcare settings.
AB - Background People with multiple health conditions are more likely to have poorer health outcomes and greater care and service needs; a reliable measure of multimorbidity would inform management strategies and resource allocation. Aim To develop and validate a modified version of the Cambridge Multimorbidity Score in an extended age range, using clinical terms that are routinely used in electronic health records across the world (Systematized Nomenclature of Medicine — Clinical Terms, SNOMED CT). Design and setting Observational study using diagnosis and prescriptions data from an English primary care sentinel surveillance network between 2014 and 2019. Method In this study new variables describing 37 health conditions were curated and the associations modelled between these and 1-year mortality risk using the Cox proportional hazard model in a development dataset (n= 300 000). Two simplified models were then developed — a 20-condition model as per the original Cambridge Multimorbidity Score and a variable reduction model using backward elimination with Akaike information criterion as the stopping criterion. The results were compared and validated for 1-year mortality in a synchronous validation dataset (n= 150 000), and for 1-year and 5-year mortality in an asynchronous validation dataset (n= 150 000). Results The final variable reduction model retained 21 conditions, and the conditions mostly overlapped with those in the 20-condition model. The model performed similarly to the 37- and 20-condition models, showing high discrimination and good calibration following recalibration. Conclusion This modified version of the Cambridge Multimorbidity Score allows reliable estimation using clinical terms that can be applied internationally across multiple healthcare settings.
KW - general practice
KW - medical record systems, computerised
KW - mortality
KW - multimorbidity
KW - population surveillance
KW - Systematized Nomenclature of Medicine — Clinical Terms
UR - http://www.scopus.com/inward/record.url?scp=85160455968&partnerID=8YFLogxK
U2 - 10.3399/BJGP.2022.0235
DO - 10.3399/BJGP.2022.0235
M3 - Article
C2 - 37130611
AN - SCOPUS:85160455968
SN - 0960-1643
VL - 73
SP - E435-E442
JO - British Journal of General Practice
JF - British Journal of General Practice
IS - 731
ER -