Cytochrome c‐based domain modularity governs genus‐level diversification of electron transfer to dissimilatory nitrite reduction

FE Aas, J Edwards, Solbakken M Hongrø, M Deeudom, Å Vik, J Moir, M Koomey, M Aspholm, Xi Li

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:title>Summary</jats:title><jats:p>The genus <jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>eisseria</jats:italic> contains two pathogenic species (<jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>. meningitidis</jats:italic> and <jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>. gonorrhoeae</jats:italic>) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique <jats:italic>c</jats:italic>‐type cytochrome (<jats:styled-content style="fixed-case"><jats:italic>c</jats:italic><jats:sub>N</jats:sub></jats:styled-content>) that is broadly distributed among commensal <jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>eisseria</jats:italic>, but absent in the pathogenic species. Specifically, <jats:styled-content style="fixed-case"><jats:italic>c</jats:italic><jats:sub>N</jats:sub></jats:styled-content> supports nitrite reduction in <jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>. gonorrhoeae</jats:italic> strains lacking the cytochromes <jats:italic>c</jats:italic><jats:sub>5</jats:sub> and <jats:styled-content style="fixed-case">CcoP</jats:styled-content> established to be critical to <jats:styled-content style="fixed-case">NirK</jats:styled-content> nitrite reductase activity. The <jats:italic>c</jats:italic>‐type cytochrome domain of <jats:styled-content style="fixed-case"><jats:italic>c</jats:italic><jats:sub>N</jats:sub></jats:styled-content> shares high sequence identity with those localized c‐terminally in <jats:italic>c</jats:italic><jats:sub>5</jats:sub> and <jats:styled-content style="fixed-case">CcoP</jats:styled-content> and all three domains were shown to donate electrons directly to <jats:styled-content style="fixed-case">NirK</jats:styled-content>. Thus, we identify three distinct but paralogous proteins that donate electrons to <jats:styled-content style="fixed-case">NirK</jats:styled-content>. We also demonstrate functionality for a <jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>. weaverii</jats:italic> <jats:styled-content style="fixed-case">NirK</jats:styled-content> variant with a <jats:styled-content style="fixed-case">C</jats:styled-content>‐terminal <jats:italic>c</jats:italic>‐type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within <jats:styled-content style="fixed-case"><jats:italic>N</jats:italic></jats:styled-content><jats:italic>eisseria</jats:italic> are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host‐restricted bacterial genus.</jats:p>
Original languageEnglish
Pages (from-to)2114-2132
Number of pages0
JournalEnvironmental Microbiology
Volume17
Issue number6
Early online date11 Dec 2014
DOIs
Publication statusPublished - Jun 2015

Fingerprint

Dive into the research topics of 'Cytochrome c‐based domain modularity governs genus‐level diversification of electron transfer to dissimilatory nitrite reduction'. Together they form a unique fingerprint.

Cite this