Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP<inf>25</inf>index

Denizcan Köseoğlu, Simon T. Belt*, Lukas Smik, Haoyi Yao, Giuliana Panieri, Jochen Knies

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

© 2017 Elsevier Ltd The discovery of IP 25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP 25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP 25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a > 90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP 25 -derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP 25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.
Original languageEnglish
Pages (from-to)406-420
Number of pages0
JournalGeochimica et Cosmochimica Acta
Volume222
Issue number0
Early online date10 Nov 2017
DOIs
Publication statusPublished - 1 Feb 2018

Fingerprint

Dive into the research topics of 'Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP<inf>25</inf>index'. Together they form a unique fingerprint.

Cite this