CCN3: a key growth regulator in Chronic Myeloid Leukaemia

L McCallum, W Lu, S Price, N Lazar, B Perbal, AE Irvine

Research output: Contribution to journalArticlepeer-review

Abstract

<jats:title>Abstract</jats:title><jats:p>Chronic Myeloid Leukaemia (CML) is characterized by expression of the constitutively active Bcr‐Abl tyrosine kinase. We have shown previously that the negative growth regulator, CCN3, is down‐regulated as a result of Bcr‐Abl kinase activity and that CCN3 has a reciprocal relationship of expression with BCR‐ABL. We now show that CCN3 confers growth regulation in CML cells by causing growth inhibition and regaining sensitivity to the induction of apoptosis. The mode of CCN3 induced growth regulation was investigated in K562 CML cells using gene transfection and treatment with recombinant CCN3. Both strategies showed CCN3 regulated CML cell growth by reducing colony formation capacity, increasing apoptosis and reducing ERK phosphorylation. K562 cells stably transfected to express CCN3 showed enhanced apoptosis in response to treatment with the tyrosine kinase inhibitor, imatinib. Whilst CCN3 expression was low or undetectable in CML stem cells, primary CD34+ CML progenitors were responsive to treatment with recombinant CCN3. This study shows that CCN3 is an important growth regulator in haematopoiesis, abrogation of CCN3 expression enhances BCR‐ABL dependent leukaemogenesis. CCN3 restores growth regulation, regains sensitivity to the induction of apoptosis and enhances imatinib cell kill in CML cells. CCN3 may provide an additional therapeutic strategy in the management of CML.</jats:p>
Original languageEnglish
Pages (from-to)115-124
Number of pages0
JournalJournal of Cell Communication and Signaling
Volume3
Issue number2
DOIs
Publication statusPublished - Jun 2009

Fingerprint

Dive into the research topics of 'CCN3: a key growth regulator in Chronic Myeloid Leukaemia'. Together they form a unique fingerprint.

Cite this